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FOREWORD

This IMA Volume ip Mathematics and its Applications

FLOW CONTROL

is based en the proceedings of a workshop that wes an integral part of the
1952-03 IMA program on “Control Theory™ Historically, flow control prob-
fems have been addressed through cxperimental investigations. Analytic and
computational research had heen based on drastically simplified flow mod-
els. However, recently. s numnber of mathematicians and other scientists have
heen addressing flow control prablems without invoking such simplifications.
The putpose of the workshop was to hring together these scientists and other
marhematicians inferested in entering this rapidly growing research area that
will have significant impact on applications.

We thank Max D. Gunzburger for organizing the workshop and for editing
the proceedings. We also take this opportunity to thank the National Science
Foundation and Office of Naval Rescarch whose financial support made the
wotkshop possible,

Avner Friedman
Willard Miller. Jr.




PREFACE

This volume contains the proceedings of the Period of Concentration
in Flow Control held at the IMA in November, 1.92. This gathering of
engincers and mathematicians was especiaily timely ar it coincided w h
the emergence of the role of mathematics and systematic engineering anal-
ysis in flow control and optimization. Sinee this mecting. this role has
sigifieantly expanded to the point where now sophisticated mathematical
and comnutational tools are being increasingly applied to the control and
optimization of fluid Hlows. Thus. these proceedings serve as a vajuable
record of some important work that has gone on to influence the practi-
eal, everyday desien of flows. Marcover, they also represent very nearly
the state of the arl in the formulation, analysis, and computation of flow
enntrol problems.

My own article in the proceedings attempts to sct the stage for the
remaining articles by describing the history of attempts at flow eontrol and
optimiration and explaining why the time is rip: for the troduction of
sophisticated tools from the theory of partial differential equations, from
optimization theory, and trom computational Auid dynamics into the study
of flow control. The remainirg articles in the volume show how these tools
may be introdueed to attack flow control problems. Mathematical issues
in optimal control, feedback control, and controllability of fluid flows are
treated in the articles by L. Casas, A. Furcikov and O. Tmanuvilov. K. lto.
H. ‘Iran and J. Scroggs, S. Sritharaa, S, Swojanevic, T. Svobodny, and R.
Temam. Computational studies of algorithms and of particular applica-
tions are found in the articles by H. Banke and R. Smitx, J. Borggaard. J.
Borggaard and J. Burns, J. Brock and W. Ng, J. Burkardt and J. Peterson.
Y.-R. Ou, G. Strurnnls, and A, Taylor, P. Newinan, G. Hou, and 1. Joncs.
Among the applications considered in this volume are aconstics, compress-
ible flows and incomnpressible flows, chemical vapor d- position, turhbulent
flows, and flows with shack waves. :

I would like to express my sincere thanks to all of the participants in
the Period of Concentration, and especially 1o the speakers and those who
contributed to these proceedings. Thanks are also due to the staff of the
IMA for their help in the production of these procecdings. Of special note
in this regard arc Patricic V. Brick, Ruth Capp, Stephan J. Skogerboe and
Kaye Smith. Finally. T would like to acknowledge the hospitality and help
extended to me and the other participants by Avner Triedman and Willard
Milier, Jr.. Without them, neither the Period of Conzentration in Flow
Contro! nor this volume would have heen possible.

Max D. Gunzburger
Rlacksburg, 1994
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ACTIVE CONTROL OF ACOUSTIC PRESSURE FIELDS
USING SMART MATERIAL TECHNOLOGIES -

H.T. BANKS! AnND R.C SMITH!

Abstract. An overview describing the use of piezoceramic patches in reducing noise
in asteuctural acoustios setling is presented. The passive and active contributionsduc to
patches which aie bunded to an Evler-Bernanlli beam or thin shell urc briefly discussed
and the results arc incorporatsd into a 2.1 strurtural acoustics model. In this moded,
An cxterior poise soure? causes structural vibrations which in turn lead to interior noise
a2 a result of noulinear Huid/strueture coupling mechanisms. Interior sound pressure
levels ure reduced via patcher honded tn the fexible boundury {a beam in this case}
which generate ure bending moments when an aut-of-phase voltage is applied. Well-
potedness resutes for e infinite dimensional systam are discussed and a Galerkin scheme
for approximating the syetens dynamics is outlined. Control is implemented by using
LQR optimal control theary to calenlate gaine for the lincariccd system and then feading
these gains back into the nonlinear system of interest. The effectivanras of this strategy
for this problem is illuctrated in an example.

1. Introduction. The recent development of bighly fuel officient tur
boprap and turbofan engines which also produee high levels of interior cabin
noise {especially at low frequencies) has stimulated a substantial effort on
the development of a comprehensive active control methodology for interior
pressure field cavities that have been excited by =ome primary or external
source. lu this vverview paper, we shall discuss recent approaches and
preliminary resulis in the growing effort to develop “smart” or “adaptive”
material concepts {nmteriale thar possess the capability for both sencing
and actuation are often called “smart” materials) and control strategios for
such a comprehensive wethodology.

Interior cavity noise in aireraft with turbaprop engines is produced pri-
marily through {nonlinear) fluid/structure interaction mechanisms. The
turhoprop hlades produce an external acoustic pressure field which is con-
verted into mechanical vibrations through fluid/structure interactions at
the exterior aireraft cabin walls. In turn, these mechanical vibrations pro-
duce, through interactions of the interior cabin walls with the air in the
cabin cavity. pressure waves of an interior acoustic pressure feld.

Our discussion here focuses on a time domain state space approath
to active or fcedback control of noise in the interior aconstic cavity, We
are especially interested in models and ethodologies which treat tran-

* The research of H'1.B. was supperted in part by the Ajr Foree Office of Scientific
Roesearch under grant AFOSR. 900091, This rescarch was alse supported by the National
Acronantics and Space Administration under NASA Uontract Numbers NAS1.18605
and NAS1-19430 while H.1.B. was a visiting scientist and R.C.S, was in residenee ut
the Institute for Computer Applications in Seience and Engineering (JCASE), NASA
Langley Reseurch Center. Hampten. VA 23681,

! Centur for Research in Seientific Computation, North Carolina State University.
Raleigh, NC 27695,

¢ Deparument of Mathematics, Towa State University, Ames. JA 50011,
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2 H.T. Banks and R.C. Smith

sient dynamics. There is a substantial literature on active control of noise
in a frequency domain setting (see [18,21,24,26.28] for some examples and
further references to both expcrimental and analytic efforts) as well as
a growing literature on infinite dimensional state space time domain ap-
proaches (e.g. {2,3.8,9.10]). Earlier efforts by most researchers focused on
a control mcthodology implemented through secondary source technigues
with the input or tecondary noise based on feedback of noise levels in the
acoustic cavity. In this approach, a system of microphones and speakers is
strategically placed in the interior cavity where one can sense the pressure
field {composed of the primary source plus any secondary sources present.).
'This information is used as feedback for the actuators or speakers which
produce a (hopefully) optimally interfering signal (secondary noise) to re-
duce the total noise levels in certain critical zones (related to passenger
comfort). Both frequency and time domain settings have been used in pro-
viding not only “proof cf concept” analyses but also in designing and and
implementing these ideas {to date, mainly in Inxury class automaobiles).

More recently, a second approach utilizing smart materials technology
has captured the attention of investigators. There are a laurge number of
classes of smart materials (e.g. electrorheological fluids. magnetostrictives,
shape memnory alloys) bui we shall restrict our discussions in this paper
to piezoceratnic devices such as piezoceramic patches which, when bonded
to a structure such as a beam. plate, or curved cylindrical shell, act as an
electro-mechanical transducer. When excited by an electric field, the patch
induces a strain in the material to which 3t is bonded and hence can be
employed as an actuator. Moreover, if the host material undergoes a defor-
mation (either bending or extension/contraction), this produces a strain in
the patch which results in a voltage across the pateh that is proportional
to the strain and thereby permits the use of the patch as a mechanical
sensor. If constructed and wired with proper circuits, these patches can
be employed as “self-sensing netuators” [20], thereby providing a smart or
adaptive material capability for the strueture to which the device is bonded
or .- which it is embedded. When combined with a computational adaptive
or feedback control element. the potential for self-controlled or intelligent,
structures is enormous.

In our presentation and discussions of active contro] of noise, we shall
concentrate on artuator aspects of piezaceramics. In the noise suppression
example detailed below, we tacitly assume that acoustic pressure in the
cavity and wall displacements and velocities are sensed for feedback. Tor a
complete smart material system, one would use piezoceramie {strain) sen-
sors and cavity pressure sensors to construct a state estimator for feedback.

The motivating example we consider consists of an exterior noise source
which is separated from an intetior cavity by an active wall or plate. This
plate transmits noise or vibrations from the exterior field to the interior
cavity via fluid/structure interactions thus leading to the formulation of
a system of partial differential equations consisting of an acoustic wave
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equation coupled with clasticity equations for the plate. The control is
implemented in the example via piezoceramic patches on the plate which
are excited in a manuer so as to produce pure bending moments. It should
be noted that the incorporation of the fredback control in this manner
irads to a system with an unbounded input term {in this case, a system with
input cacfficients involving the Dirac della *function” and its “derivative™),
Experiments are being designed and carried out st NASA Langley Research
Ceuter in which the interior cavity is taken fo be cylindrical with a circular
active plate to which sectorial piezoceramic patches are bonded.

While the motivating structural acoustics applications are three dimen-
sionel in nature. many of the theoretical and numerical issues conzerning
system modeling, the simulation of system dynarmics, estimation of physi-
¢al parameters, and the developments of feasible control strategies can be
studied in 2-D geometries. In this work, we consider a 2-D domain Q1)
which is bounded on three sides by hard walls and on the fourth by a flexible
beam {see Figure 1}. A periodic forcing function f. modeling an exterior
noise source, causes vibrations in the beam which then lead 1o unwanted
interior noise,

o

Qo r

[T Y

L

b

¢ f ~ a X
f witx)

Fic. 1. The 2.1) domain.

This specific problem was chosen since it is 2 two dimensional shics
from a three ditnensional cylindrical domain which models an experimental
apparatus consisting of a rigid cylindrical pipe with a clamped aluminum
plate at one end.

As a 2-D analogue of the plate. the perturbable boundary Ty(#) {sre
Figure 1) is modeled by a fixed-end Euler-Bernoulli beamn having Kelvin-
Voigt damping. Bonded to the beam are 5 pairs of piezocerainie patches
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which are configured and excited in a manner so as to produce pure bending
moments (see Figure 2). We reiterate that it is through the excitation of
these patches that the sound pressure levels are controlled.

The acoustic response inside the cavity is modeled by a linear wave
equation with zero normal velocity boundary conditions taken on three
walls in order to simulate the rigid walls of the experimental pipe. The
boundary conditions on the fourth (beam) side ¢f the acoustic cavity result
from nonlinear velocity and pressure couplings Letween the acoustic and
structural responses (as discussed in [14], these coupling terms are nonlinear
since they take pluce aloug the surface of the vibrating beam). Finally,
under the assumption of small beam displacements which is inhierent in the
Euler-Bernoulli theory, the variable domain 1) is replaced by the fixed
domain Q = [0, a] = [0. £ as shown in Figure 2.

¥
/r
+
7z I Y
Q " — - L
4
I‘ ) -
‘/
To e
| e
S B T
FiG. 2. Acoustic cavity with piczoceramic patches creating pure hendingmoments.

In terms of the velocity potential & (so that p =z pyé, is the acoustic
pressire) and the transverse beam displacements w. the strong form of the
approximate controlied maodel for the eoupled system is then given by

Gy = fAe , (2Y)EN >0,
Vo-n=0 , (r,y)CT.t>0.

Volt,z.w(l.r)) - n=w(t,r) ., 0<r<o.t>0,
8*Mm . \ f<r<ca,
(1.1) pu"+ﬁ——p;@x(i,r,w(l,t))-Ff(t.::) " rs0,

dw . duw
(1) = —f = w = =
u(L,0) 3:“’0) w(t.a) (,’:(I.a) 0 . t>0,
o(0.z.y) = g0z, y) . w(0,0)= wol(zx)
o0z, y) = 6u(zy) , w0, 2)=uylx)
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{for further details concerning the development of this model, see [14]).
Here p, p; and ¢ are the beam density, equilibrium density of the atmo
sphere, and speed of sound in the cavity. respectively. The general beam
moment M{{, z} consists of an internal component, depending on marerial
and geometric propertiss of the beam and patches. and an external com-
ponent {the control term) which results from the activation of the patches
through an applied vohage. Specific descriptions of these moments in a
variety of settings are given in the next section. Finally, the nonlinear cou-
pling hotween the beam vibrations and the interior acoustic field manifests
itself in the velocity term Volt, x, w(t, 2)} - f = w{t, z) and the backpres-
sure gyl wit, 2))

2. Piezocernmic Patch/Structure Interactions. As discussed in
the last seetion, control is implemented in the system through the excita-
tion of piezoceramic patches which are bonded to the heam. This affects
the dynamics of the bewn in two ways. The first effect is passive and results
from the structural changes incurred with the bonding of the patches to the
structure. In addition to the patch thickness, there is a nonirivial hond-
ing layer, and both contribute to a moment of inertia which differs from
that found in regions of the structure not covered with patches. Mare-
over, the density, Young's modulus and damping coetficient of the glue
and pateh differ from those of the beam, and as a result, these parame.
ters must he modeled as piecewise constants in order to accurately match
system frequencies {see {17]). The third passive contribution is due to the
piezoclectric property which dictates that when the patch is subjected to
an in-plane strain, a voltage proportional to the strain is produced. Heuce
longitudinal and transverse vibrations in the beam lead to the generation
of currenmt which provides additional damping in the structure. The final
{active} contribution from the piezoceramic patches results from the in-
planie strains which are produced when a voltage is applied. This leads to
the generation of external moments and forees which enter the equations
of motion as external Joads.

The mitial part of this seciion confninz a discussion concerning the
contributions due 1o patches which are bonded to an Euler-Bernoulli beam.
The changes which are necessary for extending these argnments to plates
and shells are then ontlined in the latter part of the section with further
details given in J16].

2.1, Piezoceramic Patch/Beam Interactions. In the discussion
which follows, we consider an Enler-Rernoulli beam of length £, width b and
thirkness & as depicted in Figure 3. The Young's modulus, mass density
{in mass per unit volumne) und damping coefficient for the homogencous
beam are denoted by Ej. g and cp,, respectively. Bonded to the heam
arc piezoceramic patches which con be mounted either individually or in
pairs as shown in Figures 3 and 4, In the initial discussion concerning the
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contribution due to the patch pairs, it is assumed that both patches have
thickness T, Young's modulus Ej.. density p,., and damping coefficient
¢pge- Moreover, it is assumed that the bonding iayers for each patch have
the same thickness, Young's modulus, density and damping coefficient, and
these parameters are denoted by Thr, Eur. pse and ¢ppe. respectively. We
emphasize that these assumptions are made solely for clarity of presenta-
tion, and similar results can be obtained in an analogous manner for the
more getieral case in which the patches and bonding lavers have differing
thicknesses and matcrial properties (see, for example. [16]).

For an Euler-Bernoulli beam having this configuration, foree and mo-
ment balancing yields the strong form of the dynamie equations

%y 0N, .
p(z)-(-ﬁ._,— “ e 9z »
(2.1)
( ‘&‘L &M . a dm,
P2 g PR ox

where N and M, are the internal force and moment resultants. respectively
(see [12,16]). As depicted in Figure 3. w and v denote the transverse and
longitudinal displacements. respectively. The external surface loads §,, ¢,
and iy denote normal forces, in-plane forces and moments, respectively.
For patch pairs with edges at z; and z,, the density of the structure is

piz) = pyhb + 26 (opeToe + ppe T) xypel )

where the characteristic function is given by

1 R £ <z« I2
Y s ‘e = ’ - .—
(2.2) Xpe(T) { 0 , otherwise .

y

0 Xy X2 4 x

: T N
w Mx

Fi1G6. 3. Cuntilcvcr beam with piczoceramic patches.
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A corresponding weak or variational furm of the equations can be de-
termined by choosing 1V = IT}(F'o) x HZ(Ty) for the space of trial functions
where [y denoles the beam and the subscript b again denotes the set of
functions which must satisfy the essential boundary conditions. Through
an energy derivation, one arrives at the variational form for the beani equa-
tions

o 2%y 8é, o gﬁ}}; -
L {?{?}ggét “‘N:E; - ,’ﬁz‘:a-;-}dr =0

2.0
4 B %05 . . 8%,
/; {p{:}gg;@:; o+ s\f,-g;; - gndy~ x‘tf,—g;:‘,-} dr=10

for all ¢; € H}(To) and 63 € HF(I'y). Here N, and A, are external fine
force and moment resultants. As disenssed in {16, the surface loads 4,
and iy, of (2.1) are locally related to the forces and mioments N, and XM,
(which are more natural quantities to use in a weak formulation) through
the expressions ¢, = -é’;‘,}_}. f, = %ﬁé Global expressions for the
specific loads which result from the activation of the patches in both the
strong and weak formulations are discussed later in the section.

L 1™

!a ™
F Strain

)
z
T =i | Y
-
> ™
F Strain
[P i AR AR :

—

o)

Fig. 4. Strain distribution for the componte structure undergoing bending and
eriension: {a) patch pair, and {b} single patch.
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Internal Moment and Force Resultants

In order to determine expressions for the internal force and moment
resultants Ny and M., the patch paie configuration illustrated in Figure 4a
is considered first. Beeanse these resultants depend upon the stresses and
ultimately upon the strains aceutring in the structure, the description of
the resultants begins with a description of the in-plane strains,

In aceordance with the Euler-Bernoulli theory, the strain is assuined to
be linear and is continuous throughout the combined structure. With ¢ and
 denoting the inidsurface strain and change in cutvature, respectively. the
strain at an arbitrary point in the beam, bonding laver. or patch is given
by e = ¢ + x2 where 2 is the distance of the poiut from the middle surface
of the beam (see Figure 4a). Beecause of the differing Young's moduli and
damping ccefficients in the beam, bonding layer and pateh, the stress slopes
will differ in the various layers. Under the assumption that the stress is
proportional to-a lincar combination of strain and strain rate, the stress is
given by ¢

Ere + cppe . beam
(2.4) c= Fice +epyd . bemding layers
Egee 4+ cpp.é . patches . -

The coellicients cp, and ¢pi; are the Kelvin- Voigt damping coeflicients
for the beam and honding layer while the coefficient e, is taken to be
a combination of the Kelvin Voigt damping cocfficient for the: patch and
the damping which results from the production of enrrent when the struc-
ture vibrates. This latter contribution to the damping results from the
piezoelectric effeet of the patches which dictates that a voltage is produced
when the patch is subjected to in-plane strains. Under the assumption that
the Kelvin-Voigt (material) and clectrical damping have approximately the
same types of effect in the patch. we have combined the two into the co
efficient ¢p,, which is considered to be unknown and like the other pa-
rameters, must ultimately be estimated using data fituing techniques with
experimental data when eonsidering actual applications. We also point out
that the expression {2.4) can easily he generalized to include the possibility
of differing marerial properties in the two patches or bonding layers.

The force and moment resultants are obtained by integrating the stress
across the thickness of the strucrure thus yielding the expressions

L/2
b/ od: . regions without patches
. Y Y3/
2.5 Ny =
(2:9) o L/24To+T
b / odz , rogions with patches
—hl’?"Tﬁl‘T




-
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and

A/2
b 2dz , regions without patches

(26) M.= ~h/2

5124 Tl
] f cds | regions with patches
b f2=The=T

The substitution of (2.4} into (2.5} and (2.6} yields expressions for the
resultants in terms of the midsurface strain € and chisnge in curvature &.
By considering infinitesimal deformations of the middle surface, £ and «
can be related to the longitudinal and transverse displacements v and u
through the strain-displacement equations

du Pu

L oo e

ST 8 8z2

{see [23]. pages @ and 46). For a beam having twn patches bonded fo it

the internal {material) force and moment resultants are then given by
. *

. a @
} Ne= Ek{:)§—2 + cﬂh(:}‘ﬁ—.@?
{?? . - %3
M, = Ef{:}%g + c;;f(r}éé'%“
where

Eifzy= Eehb + 20 EpeTot + Epe L xpeiz}
. RS9,
)= I:;,-l—g- + § UVLITTR 3 ST TSN P S

ephlr) = eppht + 428 [t‘;a sToe + e TI xpelT)

b 2 X 1
epl(r)=eppg + [*Dserene = copenins] xpelr) -

Here yp iz} again denotes the characteristic function deseribed in {2.2),
and the constants ase and agpy, are given by aase = (h/2 + Tye)® = (4/2)°
and agpe = (B/2+ The + TP = (/24 Tie).

The substitution of the force and moment resultants in (2 7) into the
dynamic equations {2.1) yields the equations of motion for the combined
structure in terms of the transverse and longitudinal displacements w and
u. As should be expected for a beam containing s pair of identical patehes
which are bonded symmetrically about the middle surface, the differential
equations (under the first order Euler-Bernoulli assumptions) describing
the vibrations in the two coordinate directions are ancoupled.

To see how this differs from the case in which a single patch is bonded
to the beam, we now consider the case in which a patch of width T is
bonded tu the bean over the regiou 2y < x € z4 as shown in Figure 4b.
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Integrating the stresses through the combined thickness of the structure
yields the resultant expressions

Ju 8%u 8w 8“’uv
"= v N2 ()2 (T
Np Eh(z)at +cph(.r)azol + E"’“I)a.c"’ + en2(@) 55

8%
0z0t

28 w Puw du
A= EI(:)-E-.; + 001(1‘-)(.’;;55 + E‘.’(-")o—x + enyfz)

‘The paraineters in this caze are given by

Eh(z) = Eshb + 6By Tic + EpeT) xp-(2)

b

b
Fl(r) = E'bT2— + 3 [Errase + Epeaape] xpelz)

b
Ey(r) = 3 [Estaane = Epeaspa] Ape(2)
eph(z) = epyhb + b [epy Toe + ¢p,  T) x5e(2)
e b
epl{z) = Dryy +3 [*Dseasse + epp.ap.] xpo(x)

cpa(z) = % lenteazs + eppatape] \pe(2)
with aay and asp, defined as bLefore and ass and agp, given by ay =
(h/2+ The)* — (h/2)%, azre = (h/2+ Toe + T)? = (h/2+ Tos)?.

When the force and monent expressions in (2.8) are substituted into
the dynamic equations (2.1). it is apparent. that the longitudinal and trans
verse vibrations are coupled us a result of the asymietry of the structure
due to the single patch. This is in contrast to the rase when patch pairs
are bonded to the beam and helps to indicate the, in general, nontrivial
cffect that the patches have on the passive or material properties of the
structure,

External Moment and Force Resultants

The second contribuiion from the piezoceramic patches is the gen-
eration of external moments and forces which results fromn the converse
piezoelectric property that when a voltage is applied, in-plane strains are
induced in the patch. The maguitude of these induced free strains is given
by

(!31 dﬁl

Coey = 'j., Vl v Epey = ‘1_“2

where d3; is a piezoceramic strain constant. and 1y and 15 are the voltages
into the two patches in the pair. We point out that when a voltage is applied
to a free patch witl edge coordinates ) and 11, the point ¥ = () 4 .£2)/2-
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will not move whersas the symmetric points on either side will move an
equal amount in opposite directions. This motivates the use of the indicator
function in several of the following definitions.

The stresses due to the excitation of the patches are given by

{O2)pe, = "‘Egef:e; . {§£)¥¢: = "Eféfl’fa

with the negative signs resulting from conservation of forees when halaneing
the material and induced stresses in the patch,

‘The integration of these stresses throngh the thickness of the patches
yields the expressions

(Medpe = [(Mo)pe, + (M) ]y (2)
{20

ot

(Nedor = N2 Ypes + (N2)pes] 050 (2)S: o(2)
where

{:'&f;‘};,,._ = -éﬁ}eégggfﬁ +2h+ 1MW

(Me)pes = 2;:; bdzi(h 4 2Thr + TV

{A‘r}‘n; = -Epiétf:;; {’i
ifg*'s };s; = E?»,éff:n 1'3

for the external moments and forces generated by the activation of the
patches. The presence of the indicator function

i . rea{n+r)/2
{2.10} Siadr) = g . or=ln 4 oa/fe
-1 . 2> {xy b ay}2

resnlts from the fact that for homegeneous patches having uniform thick
ness, opposite but equal strains are generated about the point z = {2y +
z2}/2.

These expressions can then be substituted dircetly into the weak equa-
tions {2.3) as loads on the heam [with §, = 0 and N, = {N,)_,,n;'i—f =
{Me)pe). In order ta determine the patch loads for the strong form of the
heam equations. the corresponding surface moments and forces are found
via the relndonships

3‘74\’!:};: . 6{3{:};@
- 3 m? = - ]
8z dr
and these latter vajues are used in {2.1). We paint our that this resnlrs

in the need to differentiate across diseontinuitics in characteristic and in-
dicator functions {once for the forer and twice for the moment) whereas

2 = -1 a(2)

E I Rk 7 § ™Y -
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this problem is avoided in the weak formulation since the derivatives are
transferred on the test functions. In fact, the effect of the characteristic
functions in the latter case is to simply restrict the integrals to the region
covered by the patches.

The general moments in the beam component of the structural accus-
tic system (1.1) can now be described in terms of the internal and external
moments just discussed. By combining both the passive and active contri-
butions due to a single pair of patches which are excited out-of-phase, the
general moment is given by

M= My = (M),

where the internal and external moments are
; #uw L BPu
Me = LI(I)E‘I_;". +CD1(J‘)7(,;?("
(M, )pa = E{ebdfil(h + 2 + T)V\}?L(r) = KBVX!'(I)

as given in (2.7) and (2.9), respectively (the latter expression is obtrined
by taking V' = V] = =V, in (2.9)). We emphasize that the out of-phase
excitation of the patches produers pure bending moments and hence only
transverse vibrations are present in the beam response.

For a system in which & pairs of patches are bonded to & heam and
are excited out-of-phase, the beam component of the gystem (1.1} has the
form

w 19 ¢ ) -
plr)= 7 d - (LIU‘)d +<pl(:) ,”> = produ)

= I+Lk”u.lt)d 30, (7]

i=]

where xpe (z) denotes the characteristic function over the i** patch pair
and u;(1) is the voltage inta the i** pair. The parameters £/ aud cpJ are
given by

EI) = 3 2 (o, 4 B e pe (2)
=L73 2 3 vu. A3k, “pe,@2pe, Xre,

m .
epl(r) = Py + E E} leose, aate, + 0l)pg,6';1;¢,} pe, ()
i=1

while the patch parameters are given by K'F = E; bds (b + 2T, + 10}
(in these definitions, the honding layers and patc ches in the 18 pair are
considered to Lave thickness Ty, and 7). respectively). We note that the
discontinuous parameters p. E1.enl and K2 lead to second derivatives of
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characteristic functions which eauses difficulties in the strong form of the
equations. The transfer of these derivatives onto test functions eliminates
these problems in the weak form of the equations and is one motivation
for using the weak form of the system equations as discussed in the next
acction.

2.2. Patch Contributions to Plate and Shell Dynamies. In the
fizst part of thix section, the eontributions from piezoceramic patches to
the jongitudinal and transverse vibrations of an Euler Bernoulli beam were
examined. it was noted that the patch contributions could be categorized
into two types; the first resulted from the structural changes incurred when
the patches were bonded to the heam while the second effect was due to
the activation of the patches when a voltage was applied. These same types
of offects result. when pirzoceramic patcher are bonded to more complex
strnctures such as thin plates or shells, o

The motion of a plate differs fremn that of a bnam in that two sots
of longitudinal motion are present with the stretching in one coordinate
direetion related to the contraction in the other through the Poisson ratio
v. In thin shells. the transverse and longitudinal vibrations are coupled due
1o the underlying curvature of the structure. However, oner the underlying
dynamic cquations in terms of the force and moment resultants are known,
the effrcts due to the presence and activation of the piezoceramic patches
can be determined in a manner analogous to that discussed above for thin
beams {see {16 ).

To illustrate, we consider a thin circular ovlindrical shell of radius &,
thickness A and having the axial coordinate z as shown in Figure 5. As
in the heam discussion, the variable » measures the distance of a point on
the structure from the corresponding point on the middle surface {2 = 4}
along the normal to the middle surface.

Fra. 5. The thin cylndrical shell

ADAZG47495
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As discussed in [16], the infinitesinal strain relationships for a eylin-
drical shell are

r =

|
o
(]
<+
e
-3
L]

“=TTR

where e. and e¢ are normal strains at an arbitrary point within the cvhn-
drica! shell and =4 is the shear strain. Here ¢4, 2o and £,4 are the normal
and shear strains in the middle surface and £, 82 and 7 are the midsurface
changes in enrvature and midsurface twist (see [23], page 8).

In terins of the sxial, tangential and radial displacements u, v and
u. respectively. the expressions for the midsurface strains and changes in
curvature for the exhindrical shell are

tu {_lat'+u' . _('?r:+16u
2 = a7 = RE TR s T s T RGe

8% 1 & + 1 dv 2w + 2 Ov
Ny = - emm— . Ky 5 e i erdvnied TR T ———
T *TTRTEST T ORI Ririb = Ror
If a generatized Hocoke's Jaw in which stress is assumned to be proportional
to a linear combination of strain aud strain rate is used ac the constirutive
relation. the stresses in the shell are given by

L,

3
1~

, Dy .. .-
Ty = (g + Vi€y ) + -"1 V_:,(": + Vsta)
’

) ) Che .. .
@y = (g 4 tytp) = —nifp )
P=? LY

L,
Orp = Cup = ;)(] " U—)’):a

-~ .ﬂ’_‘-q.-?. 2
ISIA N
where ¢, and ¢» are nornal stresses and ¢, and oy, are tangential shear
stressos, The constants L, v, and ep. are the Young's medulus, Poissen
ratio, and damping coefficient fur the shell. Siuudar relations are found in
the bending layers and patches [sce (2.4) for analogous expressians for the
beam:).
The internal or snaterial moment and foree resu'tants are obtained by
irtegrating the stresses acracs the thickness of the structure. For patches
having thickness 17 ar'l bording lavers of thickness Ty, this vields the
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eXpressions
. - & 2 ';‘ %T o -
Vo T e KR T (FEAPS
| Vot } 7 Jonppem-r L 920 R
F A ] _ E{24Th+T P i
| Nsr | -a/2-Ty,-T L F#r
{211 )
> - & ‘3 ? +T - -
Afy - 124Tee Or (1 + —{) zdz
X ;""9 4 whfteT =T L 2 4 4
- - # . . .
Mo _ f&f 24TwesT os rds
| Mor | “bf2-To-T 1 T0r ]

in regions of the structure covered by the patches with similar expressions
in those region of the structure consisting solely of chell material {the limits
of integration in this latier case are =4/2 and k/2). Explicit descriptions
for these internal moment and force resultants can he found in {16}

In a shell which is exciled by the activation of piezoceramic patches,
the external moments 2nd forces are due to the in-plane straing

da,, da ..
€pe, = {ez}pe, = {te)pe, = ‘%“1 o e, =leg)pe, =(ta)pe, = ”}Ti"i*

which result from the input of the voltages V) and V» into the outer and
.nner patches. The resulting external stresses are given by

F

1~ w2

I-fe';

(Tx)pe, = (Co)re, = = pey s {o }?E'; = {5?};;:; = - €re, -

For a patch with bounding values 7y, £2. 8 and #; the total external
line moments and forees are

{31-{:'3§=‘ = ff-"f:}; g = (‘%’ft}pt:}x}:t{r;g}
{f‘ﬂfi};-e = i‘i“‘f3§;~f; + {-"{i'};rewi Xp‘(xe {;}
{2.12) . .
{N: }pe - i’ff\?r}ps; +{N, }ﬁe;} Ype{!; 3}3; .2*:-’-}51,:'{&}

{Ny }3}:‘ = {{fv? };:e; + {-'*‘} }pz;; X;oe(-f* !ﬂS; .2{3}5‘1 .Ef{;}

where the indicator function 5, »{z) is defined in (2.10) {with a similar
definition for §; +{0}) and

(2.9 i . <<, 050<h
pef{r. 9=
Vpe ) G . otherwise .
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The individual patch moments are obtained by integrating the external
stress distribution through the thickness of the patches in the same manner
used in the beam analysis (see (16]).
In order (o obtain a strang form of the equations of motion, force and
moment balancing can he used to obtain Donnell-Mushtari shell equations
O*u AN, 8N, R@( Nedpe

r ) — - R=E . 02 S1.2(2)8) 2
Ritz OV o = Rge = a6 Bz r()Si2lf)

321’ 04\"0 vl a( A"O) e ) \
o o o e w1 = - A (,‘
R;(.r._t‘?)(,’zz ) R e ———-"—00 S1,2(x)51,2(6)
& 0’ M, 1 020, 6°Me
oz 5 = Roz R e ~ 2 oren
pP(Mels _ 100M5),.
dz R 60

(see '16.23] for a raore detailed derivation of these equations as well as a
discussion concerning the assum:ptions that are made in obtaining this and
other forms of the equations of motion for a thin shell). The contributions
due Lo the patches are incorporated in the internal moments and forces
(2.11), the external moments and forces (2.12), and the variable deusity

plz.6).

= Hén -

3. Weak Form and Well-Pesedness of the Structural Acous-
tics Model. As disenseed in the last two sections, the incorporation of
the piezoceramic patch contributions into the sirong forin of the model-
ing system equations leads to first and second derivatives of characteristic
functions since both the internal and external moments contain disconti-
nuities at the edges of the patches. This yields an unbounded control input,
operator and leads to difficulties when approximating the dynatnics of rhe
coupled system. To avoid these difficulties, it ie advantageous to formulate
the problem in weak or variational form (the use of the variational form
also perruits the use of basis funetions having less smoothness than those
used when approximating the solution to the strong form of the equations)

3.1. Weak Form of the Systemm Equations. The state for the
gecond-arder form of the 2-D structural acoustics problem is taken to be
z = (. v} in the Hilbert space H = L2{0) x L3(1'+) with the energy inner

product
L) (5)), = [ st [t
) = | =Ze¢fdy+ e
<( “’) (” H n"zc r(.p T

The choice of the space LU, defined as the quotient of L*($2) over the
constant funictions, results from the fact that the potentials are determined
only up to & constant.
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To provide 8 class of functions which are considered when defining
a variational form of the problem. we also define the Hilbert space ¥V =
HY (D) x H3(To) where H1(Q) is the quotient space of H? over the constant
functions and HJ(To) is given by H3(Io) = {v € H¥(Iq) : ¢(z) = v'(2) =
0 at £ =0.0}. The V inner product is taken as {here and below we use
the notation D = &)

(( ¢ )( ¢ )} :-j;?;?é-?édw-!- EID*wD*yd~ .
w 71y Jn. rs

As dircussed in [H4], integration in combination with the use of Green's
theorems then vields the nonlinear first-order variational form

[ Goutte + [ puants
n ¢ T

0 Ta
{31
+ /;- {fﬂfﬁ3afsﬂgi}+ pylodu)n - wig]} dy
o

*
/!: STk ult)ve., @)Dy + / Sody
LS

® =]

for all (£.1) in V (here xp. {z) denoles the characterictic function over
the #** patch). We note that the nonlinear coupling term can be written
a8 S {t.x,w{t,2)) = &, 2,0} + &t 2, w{t, 2)) whern 6,{1, 7. w(t. 2}) =
Seft. 2, wlt, z)) — 4({t, 2. 8). We will make use of this decomposition in the
sbstract formulation of the nonlinear system as a perturbation of a lin-
earized system in our discussion below. Again, a more complete discussion
and motivation conrerning the formulation of the first-order system in weak
form is given in [14).

We point out that in this variational form the derivatives have heen
transferred from the plate and patch moments onto the test funciions. This
eliminates the problem of having to approximate the derivatives of the
characteristic funetion and the Dirac delta as is the case with the strong
form of the eguations.

The system (3.1} can be formally approximated by replacing the state
variahles by their finite dimensional approximations and constructing the
resulting matrix system. Hence it is in & form which is suitable for use in
applications. In order to discuss the well-posedness of the model, however,
it is advantageous fo pose the problem in terms of sesquilinear forms and
the bounded operalars which they define, and this is the subject of the rest
of the section.
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3.2. Abstract First-Order Formulation. As motivated by theoret-
ical results in [3.4.6,15], we consider the Gelfand triple V — H =~ fI* — |"*
with pivol space H and define sesquilinear formse; . VxV — IR, i=1,2
by

o (P, V) = / g Ve -Vede | | LIDPwDindy
n To

o2(d, ¥) = A {epID%wD?n + pydn — w)}dy
[
where ® = (¢, w) and ¥ = (£, ) are in |/ (see [29] for basic definitions and
fundamental functional analysis theory).

As detailed for a similar problem in [13], it is straightforward to show
that with these definitions, ¢y and o2 are bounded (there exist ¢y and eq
such that |01(¢.W)I < Cll‘»'vl\ylv and lﬂy(‘b,\p)I S Cz’d’h’l‘pll'). o) is
V-elliptic and o2 is H-semielliptic (there exist ¢ > 0 and b > 0 such that
Re oy(®, ®) > ci®'} and Reoa(P, ) > b3 for all & € V') and that 7
is symmetric (61{®. ¥) = o1 (L. ¢) forall ¢, % € V). As aresult of the
boundedness, we can define operators 4, A» € L(V.1"*) by

(4”5’4’. W)V',V = U;(¢, ‘P)

fori=1,2.

To account. for the control contributions, we let [/ denote the Hilbert
space comtaining the control inputs (I/ = IR in our structural acoustics
example), and we define the control operator B € L{U.V'*) by

E]
(Bu, W)y v = / 3 KPuixp. (2)Dnds
' ry 1=1

for ¥ € V. where (- -}.. ¢ is the usual duality pairing. Finally, let-
t_ing F = (0.f/p) and G(z.2) = (G, —psee(r)) where again, tS,(w) =
¢!, z. w(l.2)) = (t, 2, 1:(1, 7)) — @:(t, 2,0) denotes the nonlinear pertur-
bation to the linear coupling term, we can write the control system in weak
or variational form

(2a) . WYpo p + o2(2:(1), ¥) 4+ a9 (2(2). 1)

(3.2)
= (Bult) 4+ F(t) + G(z(t). (1)) ¥}y ¢

for W in V. This then yields the system

sa() + Avzi(0) + Ay 2(t) = Bult) + F(1) 1 G(2(1), 2,(1))

in V',
To apply infinite dunensional control resnlts for periodic foreing func-
tions to this problem, it is advantageons to wnte the system in first-order
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form. This is accomplished by defining the product spaces H = ¥V x ] and
¥ = V x ¥ with the norms

@) = 10} + 191
(8. %) = 1B} + W} .

We point oul that ¥V — H = H" « V" again forms & Gelfand (riple.
The sesquilinear form ¢: ¥ x V — IR is then defined by

2(0.3) = o({T.A). (&, 1)) = = (A,8),, + 03(T.9) + 02(A, ¥)

where v ={¢. ¥} and @ = (T. A).
For the state Z{f} = (z(}, z{t}) in H, we can subsequently write the
system in the first-order variational form

(3.3) (2:1), Jy- v +0(2{t). X) = (Bu(l) + T() + G(Z(t)). X)yu v

where F{£) = {0, F{t)). G{Z(1)) = {0, G{=(1}. 5, (1))} and Bu{t) = {0, Bul1}).

As usual, the relation (3.3) must hold for all x € V. Finally, the weak form
3.3} is formally equivalent to the system

(3.4) Z(t) = AZ(t) + C(1, 2(1)
in ¥* where

(3.5} i, 2(3) = Bely + FUIY + Q{201
and

domA={0=(T.A)eH Ae VA T+ 4\ H}

3.6 0 1
A:{ } ‘
-A =4,

3.3. Model Well-Pousedness. In the previcus discussion, the weak
form of the coupled structural acoustic equations was written as an abstract
first-order semilinear initial value problem with a statein H. The nonlinear
forcing term C{t, Z(1}} = Bu{f) + F{) + G{ Z{1)} however Hes in V* rather
than H since the control term B € L7, V") defines the product space
control term Bu(ty = (0, RBu{f)) € {0} » V" C V x V* .2 V", Hence the
standard theory for abstract semilinear Cauchy probiems does not apply
directly, and the first step in the following discussion is the outline for
arguments which can be used to extend the operator A (o a space where
the theory does apply. A more extensive discussion concerning the well-
posedness of a linear problem of this type can be found in {15} and details
for the following arguments can be found in that work.

The first step in determining the well-poseduess of the systemn model
is to argue that A generates a (p-semigroup on H. As noted earlier, the
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sesquilinear form o is V-elliptic, continuous and symmetric while ¢ is con-
tinuous and H-semiclliptic. From the Lumer-Philips theorem (with further
arguments found in [1] and pages 82-84 of [4]) this then implies that the
operator A defined in (3.6) generates a Co-semigroup on the state space H.
Moreover, the semigroup satisfies the exponential hound |T(t)| < ¢*' for
t > 0 (where in fact. w = 0 due to the fact that A is dissipative as shown
in [4]). '

Since Bu(t) lies in V° rather than #, the next step is to extend the
semigroup 7 (1) on H to a semigroup T(t) on a larger space W* O {0} x V'~
so as to be compatible with the forcing term (this is accomplished using
“extrapolation space” ideas and arguments similar to those presented in
16.7,22}).

As detailed in {15], the space of interest is defined in terms cf dom A
where

dom A* = {3 = (&, ¥) € H|V € V', A]® - A3¥ € H}

-
A "“(A;q»-,i;w) :

Specifically, the space W' = [dom A"] is taken to be dom A" with the inner
product

(B, Wy, = (Ao = AT)B, (Mg = AW},

for some arbitrary but fixed Ap with Ag > « (recall that the original solution
semigroup satisfies the beund |7 ()] < e*). As proven in [7], the resulting
W norm is equivalent to the graph norm corresponding 1o A°. Moreover,
we have that {0} x V= C W* = [dom A®]* (see [15] for details).

From the definition of A" and the equivalence of the W norm with the
graph norm correspouding to A*. we can define A©@ € W* by

(A0) (x) = (. Ax),,

for all ® € H, x € W. With this definition and the Ries? representation
theorrm it i shown in {15 that A is an extension of the otiginal operator
A from dom A C H to all of H. Finally, as proven in (7]. the operator A
is the infinitesimal generator of a Cy-semigroup T(t) on W* which is an
extension of T(2) from H to W*.

In the cotresponding linear problem, under reasonable regularity con-
ditions on t ~- uft) and { — F(1), one can immediately argue the existence
of a unique strong solution to the system in terms of the extended cemi-
group T{1). For the scmilinear problem of ieterest. however, the rionlinear
nornhomogeneous terms must satisfy certain continuity criteria in order to
obtain simtlar results. For example, if we Jet X dencte the reflexive Banach
space W" and assume that €1 [0.7] x X — X defined in (3.5) i continucus
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in # on [0, 7] and uniformly Lipschitz continuous on X, then the integral
equation

0 d
Bu(s)+ F(s) +C(2(s) | ©

is well-defined for Bu + F 4+ G(Z) € L2((0.7). V"*). Moreover, for 2(0) =
2y, the solution Z{1) of (3.7) is 2 unique mild solution to (3.4} (see Theo-
rem 1.2, page 181 of [27}). In addition, if C : [0,T) x X — X is Lipschitz
continuous in both variables, then it follows from Theorem 1.8, page 188 of
{27} that {3.7) provides the strong solution to {3.4) interpreted in the W”
sense.

The required continuity of the nonhomogeneous terms Bu and F is
demonstrated in {15

@B 20 =TW)2 + fﬁ ' (D) (

3] and hence the remaining question concerns the Lip-
schitz continuity of the nonlinear coupling term G{z,2:) = (0. —pré ).
H we assume that the input terms £ and By are sufficiently smooth so as
to assure the necessary continuity in G2, ), then onr open loop nonlinear
system is well-posed.

3.4. Well-Posedness of the Closed Loop System. The arguments
Tfeading 10 the well-posedness resnits for the linear and nonlinear open loop
models can also be extended ro the closed loop systems which result when
the gains determined for a corresponding LQR problem are fed hack into
the system. In determining these gains, the perturbing force F is assuned
to be periadic {this is a rcasonable assumption since F models the exterior
poise which in this problem is generated by the revolution of turboprop or
turbofan blades).
~ Discussing first the lincarized problem. the periodic LQR problem con-
sists of finding v € L2{0, 7: 1) which minimizes a quadratic cost functional
of the form

sy = 5 [ @0 2t -+ (Rute), wter)

subject to Z,{t) = AZ{t} + Bu(f} + F(1) with Z{0) = Z{r). Since Z =
{&, 1w, &y, .}, the operator € can bhe chosen so as to emphasize the min
imization of paiiicular state variahles as well az to creats windows that
can be used 1o decrease state variations of certnin frequencies. The control
space [7 is taken to be IR’ if s patches are used in the model, and it is
assumed that the operator & € L{I7} i an 5 x s diagonal matnx where
rir > 0,i = 1,---, 8 is the weight on the controlling voltage into the
patch. In the case that B is hounded on H. a complete feedback theory for
this periodic problem can be given as discussed in [10]. This theory can
be extended 1o also include the rase of unbounded B, 1e. B € L(I, V")
of interest here {sec [5'). Under usual stabilizability and detectability as-
sumnptiont on the system as well as standard assumptions on Q, the optimal
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control is given by
(3.8) u(t)= =R™IB'[LZ(1) - r(t)]

where [T € L(V", V) is the umque nonnegative sclf-adjoint solution of the
algebraic Riceati equarion

(3.9) AN+ 0A-NBR'B'N+Q=0.

Here r is the unique r-periodic solution of

(3.10) #{t) = ~(A" = UBR™B)r(1) + IF (D)

and the optimal trajectory Z is the solution of

(3.11)  EZ()={A-BR™B'MZ(t) + BR™IB r(t) + F(1) .

As digcussed in [5; for the case when B € L{I7, V"), one alo finds
that the operator 4 —~ BR™'B'Tl generates an exponentially stable (-
semigroup 8{t) on the state space H. Fram Corollary 10.6. page 41 of
{27). this implies that 4* = TBR=18* generates the corresponding adjoint
semigroup $°(1) on H* =~ H. The semigronp S(t) can then be extended
through the extrapolation space techniques just discussed to a larger space
W= = {0} x V", and with rcasonable regularity assumptions on t — F{t),
this implies the existence of solutions to the tracking equation (3.10) and
closed loop system (3.11) for r(0) = rp and Z(0) = Zs.

As discussed in greater detail in the next section where-the correspond-
ing finite dimensional coatrol problen is considered. an effective strategy
for controlling the original nonlinear system is to determine the gains for
the linearized model and feed these back into the nonlinear system. This
then vields the nonlinear closed loop system

where again, A — BR™'B*Tl generates the C--semigroup S(t) which can
then be extended to W, With the assumption that the input term F is
sufficiently smonth so as to assure the necessary continuity in nonhcinoge
neons terms, the closed loop nonlinear system is also well-posed.

4, System Approximation and the Finite Dimensional Con-
trol Problem. The discussion thus far has ceutered around the infinire
dimensional model for the structural aconstic system as wel) as isanes con-
cerning its well-posedness. However. in order to develop viable schemes
for approximating the nonlinear system dynamics. estimating physical pa-
rameters, and determining contrel gains, appropriate finite dimensional
approximations to the state variables w and ¢ must be developed.  For
reasons discussed in (3], a Galerkin scheme was chosen and the potential
and beam displacemert were discretized in terms of spline and spectral
expansions, respectively.
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4.1. System Approximation. A tensored Legendre basis was used
for the discretization of the acoustic velocity potential. Letting P2{z) and
Pf(y) denote the standard Legendre polynomials that have been scaled
by transformation to the intervals [0,a] and [0, 4], respectively, the basis
functions { B]7} for the cavity were then defined as

3:;t:9§}=}}:{£)‘?;§¥} fei‘ £=9:1!"';mxc }.=§,}g"’,m;ﬂ £+:#Gl

where m = {m. 4+ 1}-{m, + 1) — 1. The condition i + j # { eliminates the
constant function thus guarantecing that the set of functions is suitable as
a baxis for the quotient space. The m dimensional cavity approximating
subispace is taken to be HI* == span {B[*}7L, and the approximate cavity
solution is give,: by

"

o¥it.r,y) = Y oM()B(x.y)
=1

iy Mg .
= Y ¥ sfwpiary .
j=0 i=a
+5F0

Cubic splines were used as # basis for the beamn displacement since
they satisfy the smoothness requirement as well as heing easily imple-
mented when adapting to the fixed-end boundary conditions and patch
discretizations. Letting {37 }i:: denote the cubic splines which have been
modified to sati<fy the houndnry conditions (see {3.14] for details), the cor-
responding n — 1 dimensional beam spproximating subspace is given by

7 = span {BP}'] and the approximate beam solution is taken to he

n=1i

w¥itz)= Y wN{)B(z) .

i=}

‘The approximating state space was then taken to be HY = H* x Hy
where N = m <+ n ~ 1, and the product space for the first order system is
HY = HY x HY. By restricting the infinite dimensional systemn (3.1) to
HY x H¥  one obtains the nonlinear finite dimensional system

MY = AV (y (1) + BN u(t) + FR (1)
MYV (0) =
or equivalently
70 =AY (y¥ ) + BYult) + F¥{1)

4.1
“h o (0 = 3

Explicit descriptions of the mass and stiffness operators A and A (1 (1))
as well as detailed definitions of the control matrix BY and the force vector
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F"’(t) can be found in [3,13]. The vector y (f) = (.p, (1), o (1), w¥ (1),
c (1), é’\’(t) é“‘(t\ W (), - iy (1)) contains the 2N x 1
approximate state coefficients whule u(t) = (u](t), ,(1)) contains the
s contro} variables. As detailed in [14), the nonl.neantv in the operator
AN (w™ (1)) manifests itself in the dependence of the operator on the un-
known cocfficients {w;()}]. .

4.2. The Finite Dimensional Control Problem. Due to the non-
lincarity in the infinite dimensional system (3.1) and hence the finite dimen-
sional malrix system (4.1). LQR feedback control results for problems with
periodic forcing terms can not be directly applied as there were in [3). In-
stead, the following strategy was adopted. The infinite dimensional system
was linearized by replacing the nonlincar coupling term o,(2. 2, w(t. £)) by
ils linear component ¢,(1. r,0) (this is equivalent to taking G{z(#). 2,(t)) =
0in (3.2) ur (G(Z(1)) = 0 in (3.3) or (3.4)). This linearization is motivated
by the assumption of small beam displacements which is inherent in the
Euler-Bernoulli theory (for physically reasonable input farces, the heam
dizplacements arc of the order 10~ %m for the geometries of interest). The
feedback gains for this approximate linearized system were calculated from
a periodic LQR theory (see [3]) and were then fed back into the noulinear
problem to create a stable nonlinear closed loop control system.

To illuetrate this conirol strategy, the LQR theory for problems with
periodic input terms is briefly outlined. The resulting gains are then applied
to the nonlinear problem of interest with the results being illustrated in an
example.

Linear Periodic Control Problem

As discussed in [3], the approximation of the nonlinear coupling term
¢(t. 2, w(t. x)) by its linear component, and the projection of the resulting
system into the finite dimensional subspace H~ x HV yields the linear
finite dimensional Canchy equation

g (&) = ANy + BV u(t) + FY (1)

v (0) =yl

{this ¢ystem can alzo he obtained by restricting the infinite dimensional
system (3.2) with G(z(t), (1)) = 0 to HY x H™). The components of the
linear stiffiness matrix can be found in {3].

The periodic finite dimensional control problem is ”wn to find u ¢
L2(0, 7) which minimizes

(42)

IV(u) = %/ LYV i) yV gy + (Ru(t), ult)ge Ydt, N = m4n—1
J

where yV solves (1.2), 7 is the pericd. R is an s x s diagonal matrix and
ri; > 0,i=1,-. .. ¢ is the weight or penalty on the controlling voltage into
the i** patch.
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The nonncgative definite matrix QV is chosen in a manner so as to
to emphasize the minimization of particular state variables. From enerpy
considerations as discussed in [3], an appropriate choice for @V in this case
is

; Q¥ =M"p
where M7 is the mass matrix, and the diagonal matrix D is given by
D = diag {d;fm,fgfn-l,ffafm,d.gfﬂqil .

Here I* (k= m,n—1, denotes a k x b identity and the parameters d; are
chusen to enhance stability and performance of the feedback.
The optimal control is then given by

w¥(t) = R-Y(BY)T [P¥ () - 1%y (1)
where ITV is the solution to the algebraic Riceati equation
(4.3) {A.":}?K,\‘ + V4N - {INBXR-R{ES’}THN + Q."a’ =0.

For the regulator problem with periodic forcing function F¥(), r¥ (1) must
satisfy the linear differential cquation

()= = [V = BY R BN ¥ 1)+ IV EN (G

(4.4)
rﬂ{{i} = r"“{?}

while the optinal trajertory is the solution to the linear differential eoua-
tion

,’f?{t} = {Ax _ 3&3-1{3’?}?{?‘;1 §x§§} + B"’R‘*{B‘“}?r*"’{f} + FN{Q
g0y =y ().

The $nite dunensional optimal control, Riccati solution, tracking equa-
tion and closed loop system can be compared with the original infinite
dimensional relations given in (3.8), {3.9). {3.10) and {3.11), respectively.
~ In order to guarantee the convergence IV — Il #¥ — r_ and hence the
convergence of #¥ -~ u. it is sufficient to impase varions conditions on the
original and approximate systems. These hypotheses include convergence
requirements for the uncontrolied problem as well as the requirement that
the approximation systems preserve stabilizability and detectability mar-
gins uniformly. A fully developed theory (see [5]) is available for the case
when F = 0 {in this case the tracking variable r doss not appear in the
solution) even when B is unbounded. However, the theory in [5] requires
sirong damping in the second-order systermn whereas the only damping in
our system is the strong Kelvin-Voigt damping in the beam (damping in
the cavity was omitted due to the relatively small dimensions involved).

XTSRS T
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Although the convergence theory of [3] does not directly apply here, nu-
merical tests indicate that convergence is obtained even though this system
contains only weak or boundary damping.

Nonlinear Control Problem

To extend these results to the nonlinear systeni of interest, the hinear
gains were calculated and fed back into the nonlincar system (4.1), thus
vielding the suboptimal control

WNiey = REBYT [V(e) - BV 2))
and the closed loop system
y-h'(') - AH (yN‘(t)) - BVR-‘(B,V)'I'H,V!’N“) + B}\'R—-I(BA')T',N“) + F;\'(f)
v =yV(r) .

The Riecati matrix [TV and tracking vector #¥(2) are solutions to (4.3) and
(4.4) which arise when formulating the corresponding LQR problem.

Example: Nonlinear Control

‘To illustrate the dynamics and effects of feedback control on a norlinear
system modeling a 2-D analogue of a 3-D experimental setup, a .6 m by
1 m cavity with a flexible beam at one end wa. considered {sce Tigure ).
The beam was assumed to have width and thickness .1 m and .005 m,
respectively, and the Young's modulus and beam density were taken to
be E = 7.1 x 10'® N/m? and p» = 2700 kg/m3. This yielded the stiffness
patameter EJ == 73.96 Nm® and linear mass density p = 1.25 kg/m. The
damping parameter for the bearn was chosen to be ¢p/ = .001 kgm3/sec.
The speed of sound and atmospheric density inside the cavity were taken
to be ¢ = 343 m/sec and py = 1.21 kg/m?, respectively.

0 6
F1G. 6. Acoustic cavily with one centered 1/2 length patch.
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Several forcing functions modeling uniform (in space} periodic exterior
sound sources were considered. In this example, the foreing function was
taken to be f{f . r) = 2.04sin{470x¢) which models a periodic plane wave
with a root mean square {rmws) sound pressure level of 117 dB. The fre-
quency of 235 hertz is approximately halfivay between the first and fourth
natural frequencies of the system {as shown in {11}, these occur at 3.9
hertz and 387.% hertz, respectively).

The dynamics of the uncontrolled systens were approximated using
80 ravity basis functions {m, = my, = 8) aud 11 heam hasis functions
{n = 12). The time interval of interest war taken to be [0,16/235] which
admitted 18 periods of the driving frequency, and time histories of the
beam displacement at X = .3 and cavity pressure at X = 3.Y = 1 on
this temporal interval are ploited in Figures 7 and &,

The frequency plots of the uncoutrolled beam displacement and eavity
pressurc in Figures 9 and 10 exhibit not only the driving frequency but also
transicnt responses at 85.9, 181.6,345.2. 387.7 and 518.5 hert? which arc due
to the natural froquencies of the coupled system (see [11] for a complete
discussion of the dynamits and natural frequencies for the corresponding
linearized system). In particular, the high energy response at 181.6 hertz
indicates n strong excitation of the system al what corresponds to the
frequency for the first mode of the uncoupled cavity {sare must be taken
when describing the dynamics of the system in terms of the undamped
beam and cavity modes since the nonlinear coupling and beam damping
vield system responses which differ somewhar from those of the isolated
components}. The presence of the multiple frequencies can also be seen in
the time hister, plots of the uncontrolled beam displacement and cavity
pressure in Figures 7 amd &,

Control was then implemented by using Potter’s methed to calculate
the gains for the Jinearized system and feeding them back inte the nonlinear
system as discussed previously. The following results were obtained with an
out-of phase single pair (s0 as 1o ereate pure hending moments) of centered
patches covering one half of the beam length as shown in Figure 6. The
quadratic cost functionnl parameters were taken to be dy = d; = dy =
1,ds = 10% and R = 10~° with da chosen to have larger magnitude so as
to more heavily penalize large pressure variations,

Figure 11 contains a plot of the rontrolling voltage u{t}. As expected.
it is periodie, and the magnitude remains helow 25V which is a physically
reasonable voltage to apply to the piezoceramic patches,

¥e point ont that the application of the controlling voltage resulted in
a high frequency transient response and 168 cavity basis functions {m, =
m, = 12} and 15 beam basis functions {n = 16} were needed to resolve the
tontrolled systemn dynamirs.

From Figures 7 and 8, it can be seen that the controlled responses
undergo a transient phase of approximately three periods and then are
maintained at a low magnitede theoughout the rest of the time interval.

R N A
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By caiculating the rms pressure levels, it was determined that at the point
(X, Y) = (.3,.1). the uncontrolled sound pressare level is 82.8 dB whereas
the controlled sound pressure is redueed 15.7 dB to 67.1 dB. The level
of reduction becotner even more significant as ane moves decper into the
cavity sinee the stroug cavity excitation in the uncontrolled case yields high
magnitude pressure oscillations near the back wall which are uniformly
reduced by the application of the controlling voltage. Finally, it is noted
that the relative reduction in pressure is more significant than the reduction
in heam displacement. This is due to the heavier penalization of pressure
flurruations through the choices ds = 1 and dy = 101

The frequencey plots of the centeolled responses (in Figures 9 and 10)
shiow that the dominant response is now at the driving frequency of 235
hert7. ‘Lhey also deronstrate the presence of high frequency transient
responses which are much more signifieant than those found in the un-
conitolled case. Thie indicates that the inteviar pressure oscillations are
reduced through two mechanisins when the controlling veltage is applied;

‘the ficst is due (o the reduced magnitude of the beam displacements while

the second is due to the excitation of high frequency beam oscillations
which couple less readily with the ‘nterior acoustic field. The combination
of the two results un significatly redneed interior sound pressure levels.
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5. Conclusion. In this paper. we have discussed several of the issues
which are involved in using piezoceramic patches as actuators in a non-
linear structural acoustics application. The patchrs affect the dynamics
of the conpled system by contributing external forces and moments to the
structure when a voltage is applied, and the first part of the discussion is
centered around a description of the interactions between the patches and
an Euler-Bernoulli beam and a thin cylindrical shell. In this discussion, care
was {aken to distingnish between the passive {material} contributions, due
to the added thickness and differing material properties of the patch and
bonding layer, and the active {external) contributions which result from
the strains which are produced when a voltage is applied to the patches.

As a result of the differing material properties and presence of the
piezoceramic patches, the material and control parameters of the combined
structure are pircewise constant in nature and hence lead to discontinuities
in the moment and force resultants. This leads to difficulties in the strong
form of the system equations when the moments are differentiated and is
one motivation for using the weak or variational form where the derivatives
are transferred onto the test functions. The weak forin is also advantageons
for many approximation schemes since it reduces the smoothness require-
ments for the basis eleinents. Finally, well-posedness issues were considered
by posing the weak forn in the context of sesquilinear formns.

Due to the nonlinearities arising in the coupling between the besm vi-
brations and the interior acoustic field, LQR feedback control results could
not he directly applied o the problem. Instead, gains corresponding to the
Linearized problem were calculated and fed back into the nonlinear system.
As demonstrated by the resuhs in the example as well as the more exten-
sive set of examples in {14], this strategy is very effective for this problem.
This is partly due to the weakress of the nonlinearity. By comparing the
nonlinear results reported here and in [14] with the corresponding linear
ones in {11}, one can see that qualitatively, the two sets agree closely. This
can be explained by the fart that the heam displacements are very small
and hence the linearized coupling terms quite accurately approximate the
true nonlinear expressions.
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ON THE PRESENCE OF SHOCKS IN DOMAIN
OPTIMIZATION OF EULER FLOWS

J.T. BORGGAARD®

Abstract. In this paper we consider a shape optimization problem for a 1-D Euler
flon We show that for problems with shocks, the use of high order CFD schemes
cr.n produce artificial lecal minima in the approximate cost functional. These local
minima can cause optimization algorithms to fail. \We illustrate this phenomenon, show
how hybrid algarithms may be constructed to overcome this problem and specnlate an
potential difficulties that may occur in more complex situations.

1. Introduction and motivation. The use of domain optimization
techniques in the design of fluid flow systems has shown great promise in
many areas of application. In this paper, we focus on domain optimization
problems which involve shocks. An example of a problem of this type
is the optimal forebody-simulator design problem. A forebody-simulator
(FBS) is a device that is shaped and atiached to a jet engine in order
to produce a flow that “simulates” the flow that would result from a full
aircraft forchody. The optimization problem is to find the shape of this FBS
which will provide flow to the engine inlet which is as close as possible to the
flow which the engine would receive in flight. This problem is described
in detail in papers by Huddleston {6] and Berggaard, Burns, CIliff and
Gunzburger (1].

Fhiid flow systems which are modeled by Euler equations are inter-
esting since they are of mixed type, which can lead to discontinuities (or
shocks) in their flow solutions. The existence of shocks produces some
interesting difficulties in the resulting optimization problem. which is pri-
marily caused by the choice of a numerica” approximation. To understand
this behavior, we study a simple model which displays the same features
as the optimal FBS design problem.

The model problem consists of a steady-state Euler flow in a 1-D duct
with variable cross-sectional area. The goal of the optimal design problemn is
to find the cross-sectional area that minimizes the distance between the flow
and a desired flow. With the proper choice of inlet and outlet conditions and
constraints on the variation of the duct cross sectional area, this problemn
contains a shock. Althongh this problem is complex enough 1o capture the
difficulties presented by shocks in the flow, the 1-D problem can be solved
analytically. Consequently, the cost functional can easily be computed
and there are several numerical schemes which can be used to solve this

* This work was supported in part by the Air Force Office of Scientific Research nn-
der grunt AFOSR 149620 92-J-0078. The author would like to express his appreciation
to Dr. John A. Burns for his helpfu! suggestions. Department of Mathematice, Inter-
disciplinary Center for Applied Mathematics. Virginia Polytechnic Instituts and State
University, Blacksburg. Virginia 24061.
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problem. This model problem has been used by Frank and Shubin 5] in
their study of optimal design.

As noted above, steady state Fuler equations produce interesting be-
havior when used in an optimization scheme. The basic problem comes
from trying to “match” discontinuous flow solutions. We shall see that in
theory the minimum is very distinel, i.e. the cost functional has a clear
global minimum caused by the penalty of not matching shock locations.
However, using numerical methods to solve the minimization problem can
cause local minima in the approximate cost functional. Thus, optimization
strategios which are used to solve this class of problems have to account
{or this phenomena.

The remainder of this paper is organized as follows. We present a
description of the model problem in the next section. This 1-D problem
may be found in the paper by Frank and Shubin {5]. However, for com-
pleteness we present a description of the reduction of the Culer equations
to a single ordinary differential equation and give the solution. The op
timal design problem is presented and approximated by using numerical
schemes to solve the Euler equations. We show how the approximate cost
functional is affected by different numerical approximation schemes and
demonstrate how using a particular pumerical method {which accurately
models the shoek) can lead to negative results when used in conjunction
. with an optimization algorithm. A hybrid optimal design algorithin is pre-
sented which produees an optimal design and avoids the problem caused
by the local minima. Finally, we summarize our findings and discuss the
potential applicability to more complex problems. such as the optimal FBS
design problem.

2. Model problem description.

2.1. One dimensional Euler equations, Although the formulation
presented below may be found in [5]. it is included here for completeness
and to infroduce notation. Assuming s steady. inviscid flow in a duct {see
Figure 2.1} where the flow variables {p, u, ¢ and p denoting density, velocity,
internal energy and pressure} depend only on the length along the duct,
‘the balance laws produce the following form of the Euler equations;

{2.1) puA = constat =
{2.2) {;&2;&] €= -pe A
2.3) {,ﬂf + -;;pu"‘ + p} uA = constant = L,

where A(£) is the cross-sectional area as shown in Figure 2.1, This set of
equations can be reduced to a single ordinary differential equation for the
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velocity by substituting equations (2.1), (2.3) and the ideal gas law,
(2.4) p=(y-1)pe. (v =14 for air)
into the momentnm balance equation {2.2). The resulting equation is

0 = I-{ Ae = H _
(2.3) [u+ - +3 (Yu ")-0‘

¢
where § = (v = 1)/(7 + 1) and # = 23L/C. Defining

- . A
(2.6) flu)=u+ ” and g(u,A) = ” (Fu ” ),

we describe the state u, given a cross-sectional area A(-) (with 4¢ > 0). as
the solution to the following two-point houndary value problem:

U(u)]g -+ y(U.A) =0

(2.7) w(0) = v, and lu(l) = Uayt-

u A®

| : .

(2.8) .4,:(‘_1— ~u?)7=T = f,
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where K is a constant. Since A¢ > 0, it follows from the theory of hyper-
bolic equations ({2} and [7]) that the geometry of a diffusing duct {4 > 0)
can produce at most one {normal) shock. Thus, equation {2.8) can be used
to determine the flow on either side of the shock (by using the boundary
conditions to detzrinine the values of the constants Ay, and R}, All
that remains is 10 determine the location of the shock.

Sinee the flow is steady, the shock speed & is zero. This implies that

(2.9) alw) = -g(ef,} =1- ;i‘;- =0, (=>u.=VEH)

where ¢, is the speed of sound. Applying the Rankine-Hugoniot condition
{7 yiclds

{2.10) e, = H,

where u; and u. represent the limiting velocity from the left and from the

right of the shock, respectively. The value of the shock location, £, ean he
deteriined by solving the equation

. I Y R NSO VU Y. S
{(2.11) I{;f‘g{-‘z W) =4 N) = Km“’{-} 7]

glong with {2.10). for w; and u-. Applying {2.8). A(£.) can be found and
since A¢ > 0 it follows that one can solve for £..
Consider the solufion of rquation {2.7) with

(2.12) A(E) = 1.05 + (1.745 - 1.05)€ — 0.09sin(25¢),

§F=04/24, H = 1.14, u;, = 1.299 and u,,, = 0.306. Using the technique
described above, we get A{f.) = 1.3703 which leads to £, = 0.4786 {using
MATLAB to invert equation {2.12)). The resulting solution for # is plotted
in Figure 2.2.

2.2. Optimizationproblem. Let A= {4: 0.1l =R|4e 0 1),
Ae(€) > 0} and define J : A — M by

(2.13) J(A) = fd E{a{z:,é{-j;; a(x))dz

where u{r; A(-}) is the solution of the boundary value problem (2.7). The
optimal design problemn is to find 4 € A such that
| J(4) < J(A4) for all A€ A.

This is now an influite dimensiomal optimal control problem and one could
use the theory of distribured parameter contro} to attack this problem.
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However. we shall restrict our attention to the case (as is common in prac-
tice) where A(-) has been parameterized. This leads to the problem of
minimizing J over a finite dinensional subspace B C A.

In our example, we consider a subspace of the Bernstein-Bezier quadratic
polynomials, 82, Bernstein-Bezier polynomials possess several nice prop-
erties when used in approximations. The most important for us are the
conver hull and c¢ndpoint interpolation properties {(see e [4]). These
propertics allow us to satisfy the monotonicity requirement and match the
inflow and outflow cross sectional area easily. Thus we louk at eptimization
over

214) B = {B:[0,1]]~R!B=1.058%+b,B +1.745B3;
b, € (1.05,1.745)}

where

Bi(¢) = ( : )6‘(1 =&, gefod

In particular. we optiize over a one parameter family of (' curves.

It is also the case that (as in the optimal FBS problem) given any 4 €
8, it may not be possible to analytically solve (2.7} for v. Consequently, one
must consider numerical approximations, such as finite difference methods.
for solving {2.7). In any practical probleni one must consider a discrete
analog of the optimization problem above.

The discretized optitnization problem now becomes: Find A* € B te
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minimize
1 N
(2.15) TV(A) = TV (k) = 5 3 () - '
=1

where ;¥ (4) is a numerical approximation of u(4) at discrete points in
[0.1] and &Y is discrete data. For our problem, w¥ will comne from finite
difference solutions of (2.7) discussed in Section 3, and & will correspond
to points taken from the curve given in Figure 2.2. Note that we assume
that experimental data is given at the finite difference mesh points. If this
were not true, then some type of interpolation must be used.

3. Numerical results.

3.1. Introduetion. In this sectisn, we study the phenomenon of lo-
cal minima in the approximate cost functional. J~. We consider three
numerical schemnes [5; for finding approxinations u” of the houndary value
problem (2.7). These are the Godunov, the Enquist-Osher and the arti-
ficial viscosity methods. The methods discretize the interval [0,1] into ¥
cells of length A = 1/N, with centers, & = h{j - 1/2). j=1...., 5. The
flow velocity u is modeled as a constant over each of these cells (v is the
constant associated with the jth cell). In all of these methods, u is found
as the root of a system of nonlinear equations,

(3.1 M;_?&:ﬁ.].gj::ﬁ j;:i,.,.,f;
where f; = f(:;j""} and g; == g{ﬁf ,A(§;1). The three methods differ in

how the flux f,4yz is determined from fj. fi41 and f(1.}. The Godunov
method uses the formula

f}+§ . Uyey < He!
3 5 Uyt gy >
finp= f(u.) ) < da < Ujar:

max(fj, f,+1) %41 <u <y,

the Enqguist-Osher method uses

fin Ui Uiy < U
g = i Uj.Ujpy > U
f;-&%f& Flu} y < U, < Ui4g:

it hier— flu} wigy <u. <.
and the artificial viscosity method uses
fiaip = Y2 a1 + fj — wjpn + 45}

These three methods were applied to (2.7) where the cross-sectional
arca was given by equation {2.12). Plots of these solutions for ¥ = 43

[P —




ADA294785

SHOCKS IN DOMAIN OFTIMIZATION OF EULER FLOWS 41

along with the exact solution are shown in Figure 3.1. Of the three methods
considered here, the Godunov method provides the hetter approximation
to the discontinuous solution &. The Enquist-Osher method gives similar
results except there is one 1nore mesh point in the transition region hetween
the supersonic and subsonic flow. The artificial viecasity method, on the
other hand, has significant error in this region.

© - Godunov Method

1.6 [ *  £nquist-Osher Mathod <
,.’”f * .. Aol Viscosity Method

Veocity
o

¢
0.8}
o6l “a
Cessssesnnonm
0.4 e e S - )

os 08 o8 1
Duct Length

F16. 3.1, Nwme=ical Solutrcns of 1-D Verying Duct Probiem

Ac shown in the next sections, the approximate ecst functicrnal J+,
which is obtained using the Godunov method to solve (2.7) for u¥ | contains
(nunierically generared) local minima, while the approximate cost function-
als obtained using the Enqguist-Osher and artificial viscosity methods do
not. Furthermore, an example is presented where cascading the Godunov
method into an optimization algurithm does not produre the global min-
num. In addition, a hybrid scheme is presented which eireumvents the
optimization problems cansed by the local minima and achieves the global
minimum.

3.2. Cost functionals. Two levels of approximation were used te
obtain JV from J. The first was to replace the integral operator in 7 by
the sum of terms [u(&,: AC)) = (£} weighted by N (= F) The second was
10 replace u(€; ALY by u and (&) by 1. The accuracy of the second
Jevel of approximation ia solely determined by the particular choice of the
nnmerical scheme (for this problem, there is no error in replacing #(£;) by
ﬁ?’). However, it is the first leve) of approximation which can introduce
the interesting behavior in the approximate cost functionals.

We demonstrate this fact by plotting the cost functional 7 vs  the
Bezier parameter b, int Figure 3.2. The cost functional 7 contains a well de-
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fined unique minimum due to the large penalty associated with not match-
ing the shock locations. Figure 3.3 contains plots of 7% vs. &, (for a few
values of N) where uV consists of (mesh) point evaluations of the exact
solution to {2.7). Therefore, only the first level of approximation is used.
We see that the resulting approximate cost functionals contain steps which
are cleatly local minima when &, is to the lefi of the global minimum, §3.

i EY 17

€9 T2 1.3

1.4 ’
Bezinr Parametar

Fio. 3.2. Cost Functione) with Erect Flow Lolufren

0.18 y—— s e —
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ima) in the cpproximate cost functional may be explained as follows. The
approximate cost functional JV contains a weighted sum of terms of the
form [u(&; A) - wl(&))?. 1 u(&i: A) and u(&;) represent flow on diffcrent.
sides of the shock. i.e. if u(§;; A) is supersonic and 4(£;) is subsonic, or
visa versa, then the ith term in the sum adds a large contribution to J.
Whereas, if u(&;: ) and u(€;) represent flow on the same side of the shock.
i.e. either hoth are supersonic or hoth are subsonie, then the ith term is
not nearly as significant. As the Bezier parameter by, varies, the location
of the shuck in v aleo varies, Henee, as the shock lacation passes through
&, w(€ . A) will jump from supersonie to suhsonic, or visa versa. This will
significantly change the value of the ith term in the summation. It is this
change which causes the steps

‘Lhis reascning also leads to the conclusion that performing the fiest
level of approximation of 7 by a Rieinann sum

N
3 el A) = i),

[

where {c;} are weights and {z,} is any “practical” distribution of points in
[0.1] (i-e. not all clustrred near the endpoints), produces the same behavior
in 7. Remarkably, this includes Gaussian integration rules of arbitrary
accuracy.

We turn now to the second level of approximation. where u{£;: 4) is
replaced by # ¥ (A), one of the numerical approximarions to the boundary
valie preblem (2.9). As shown in Figure 3.1, there is sorne approximation
error near the shock using any of these methods, Conseyuently, there are
values of #™ which lic between the supersonic and subeonic fow curves.
The terms in the smmatiem whizh correspond to these points do not have
the satne dramatic changes in value when the shock lies just on either <ide
of them. Therefare, this approximation error in 2 tende to smaoth ant.
TV

The approximate cost functionals 7' and J4 obtained using the
Godunov scheme are shown in Figure 3.4, We note that there are loca)
minima to the left of the global minimum. This is similar to the behavior
in Tigure 3.3. except the approximate cost functional is much “smoother™.
For the cases when the Enquist-Osher and artificial visecsity methods are
used to compute 7% and J* {plotied in Figures 3.5 and 3.5, respectivelv).
these artificial local minima do not oceur. The fact that there are more
mesh points connecting the supersonic and the subsonic flow curves account
for the smonth approximate cost functionals.

3.3. Optimization results. In this seclicn, we present optimization
results using a "black box™ methed 5], This method couples the evalua-
tion of 7V dcscribed in Section 2.2 with a2 BFGS based quasi- Newton min-
imization aigorithmn using finite difference approximations to evaluate the
gradient {3}, This method is applied to the cotimization problem (2.13).
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Fic. 3.4, Approrimate Cost Functivial . Godwnor Sehers

TanLr 3.1
Minimization wsiny Gedynov Method

Iteration | Bezier Parameter | Objective Function | Gradient
] 1.13000 6.24436 -6.92614

1 1.13037 6.20974 -1.19887

2 114133 6.20818 -.40852

3 1.14235 6.20785 -0.04043

4 1.14246 6.20795 -0.001536

5 1.14246 6.20793 -6.00001
|6 1.14246 ) 6.20793 §.00000

This “black box™ method i used to try to find the Bezier parameter b7
which uniquely describres the cross-cectional area A* € B, \We will compare
the convergence of minimization schemes when the cost functional 7% is
computed using numerical solutions u® obtained using hoth the Godunov
and the Enquist-Osher methods.

We saw in the last scetion that when the cost functional is computed
using the Godunov method, there were a large number of Jucal minima,
Observe that when an iteration is started with an initial guess for the
Bezier parameter of 1.13 {near a local minimum), the iteration stalls at a
ioeal minimum since the gradient goes to zeto. This ileration history is
presented in Table 3.1 above.

When the iteration is started to the right of thix loeal minima, e.g.
an initial Bezier parameter of 1.18, we find that the iteration converges
{see Table 3.2} to the global minimun seen in Figure 1.4, However, the
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F16. 3.5. Approrimate Cost Furetional - Dagvist-Osher Scheme

TABLE 3.2
Minimization waing Gedwnor Method

Iteration { Bezier Parameter | Objective Function | Gradient
0 1.13000 5.28376 -89.36653
1 1.19309 4.60160 -26.30958
2 1.19855 4.49142 -14.93566
3 1.20572 1.41886 -(.18889
6 1.21580 4.29234 -85.33195
11 : 1.24494 3.40024 -2.23058
22 ' 1.30412 1.76934 -5.01563
3 1.35864 ~ 1.70586 -11.69953
44 1.37126 0.108580 0.13637

convergence is slow, taking 14 steps. The tlow convergence is raused by
the algorithm having to pass over the “steps™ in the approximate cost
functional.

Fast convergence is observed. however. when we compute the approx-
imate cost functional using the Enquist-Osher methed. This is expected
since, as we saw in Figure 3.5. the extra point in the shock region removes
the local minima from J. Starting at the same initial point of 1.13 whick
caused the Godunov method to fail, we find that convergence is reached in
just 6 iterations. The iteration history using the Enquist-Osher method in
onr “blark hox™ scheme is presented in Table 3.3 below. It is imporiant to
note that although this convergence is rapid, the value of the globul mini-
mizer for this approximate cost functional 73° is still not the best estimate
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Fi16. 3.6, Approrimats Cost Punctionel - Artificial Viscesity Scheme

Tastr 3.3
Minimization ysing Engusst-Osher Method

Iteration | Bezier Parameter | Objective Function | Gradient |
¢ 1.13000 6.15394 -23.80309 !
i 1.33000 0.90358 -27.81271 4
2 1.37000 0.15503 5.46034 |
3 1.38310 0.14660 -2.42231 |
4 1368357 | 0.14320 0.02460
5 1.36558 : 0.14329 0.60040
6 1.36358 @.§43_29 0.00040 |

of 5, {the minimumof 7) we can achieve. As we saw above (and in Figure
3.4} the Godunov method produces a more accurate approximation of 7,

3.4. Hybrid optimizationschems, Fxaminingthe approximate cost
functionals in Figure 1.3, we see that erroncous results could be obtained
from optimization schemes which would use a perfect pumerical solution
of the boundary value problem (2.7). We have also seen that using the
Godunov scheme to evaluate the approximate cost functional can lead to
problems if we are unlucky enough to start near a local minimum,

Here we proposc a strategy designed 1o overcome the problem when
approximate cost functionals have artificial local minima as those in Figures
3.3 or 3.4. We begin the iteration computing J* using a numerical scheme
which uses enongh dissipation {o “smear” the shock over several gridd points.
This wonld allow us 10 converge quickly to a region which is close to the
minimum. At this point, we use the more accurate estimate of ¥ in JV
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TABLE 3.4
AMinimization using Hydrid Method

Tteration | Bezier Parameter | Objective Function | Gradient
0 1.13000 6.15391 | -23.80509
1 1.33000 0.90358 -27.61271
2 1.37000 0.15503 5.46034
3 1.36340 0.14660 -2.92231
0 1.36340 0.12991 -5.72003
1 1.37050 0.10929 -0.70580
2 1.37150 0.10017 0.18529
3 1.37077 0.10911 -0.57639
4 1.37094 0.10902 -0.49796
5 1.37135 0.10898 1.21808
6 1.37107 - 0.10896 -0.44042
7 137113 0.10892 -0.40346
8 1.37123 0.10889 -0.36974
9 1.37126 0.10889 0.49282
10 1.37125 0.10889 -0.36076
il 1.37125 0.10889 0.46015

12 1.37125 0.10R89 0.16183

and continue the optimization. This hybrid method will work only if (as
is the case here) the first inethod produces a global minitum close enough
to the global mininmm of the seeond approximetion so that using this as a
starting value avoids loeal minima and converges to a more accurate global
minimun.

An example of this hybrid method is presented below. The scheme
switches from the Enquist-Osher ta the Godunov method when the change
in JV is less than 0.01. ‘The optimization results are given in Table 3.4
below. We see that starting with an initial guess of 1.13, this algorithm
converged to the optiinuin value achieved in Table 3.2. 'The first 3 iterations
used the Enguist-Oshier method and then switched to the Goduncv method
for the remaining 12 iterations.

4. Comments. Shape optimization problems for systems with shocks
can produce unexpected results. We illustrated one of these featnres by
studying a particular Euler flow using a model 1-1) steady state duet prob-
lem. Numerical approximations of the cost functional coupled with dis-
continuous solutions (shocks) arising from the Euler equations, produced
artificial local minima in the approximate cost functional, as we expacted.
It was observed that these local minima are more pronounced when the
numerical) approximation scheme predicts the shock more accurately. Also,
the existence of these nurnerically penerated local minima caused a domain
optitnization scheme Lo fail to converge to the global minimum. The point
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of this example is to show that applying optimization loops to “accurate”
Euler How solvers may produce designs that are not optimal.

We denonstrated that Euler flow solvers which have sufficient numer-
ical dissipation do not produce these artificial minima. This was used to
construct a hybrid algorithm which used a flow solver containing numerical
dissipation to produce a beiter initial gucss for an optimization algorithm
based on a more accurate How solver. This hybrid method requires that
one ¢an find an initial guess which is close enough to the minimum so that
the numerically generated local minima are nof encountered.

However. other strategies for avoiding the local minima problem can
be considered. A natural approach is to find a good initial guess by first
optimizing on 3 coarse mesh. In addition to the iscue of efficiency, one
should encounter fewer local minima. As noted above, introduction of
implicit numerical dissipation {present in some numerical schemes) may
avoid the local minima problemn altogether. In practice, one may ba able
to increase the artificial dissipation level in these numierical schemes using
artificial dissipation for stakility. This may be necessary when computing
on very fine meshes. Experience with the optimal FBS design problem
has shown that the dissipation present for stabilizing the numerical scheme
may itseil by snfficient to avoid the problem.

A desirable strategy would be to use numerical methods which track
the shock locations. If the location of the shocks in the experimental datais
also known, then the integration in equation {2.13} could he approximated
more carefully and avoid the problem altogether. Unfortunately this is not
always feasible. The optimal FBS design problem is an example where the
shock location is not known.
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A SENSITIVITY EQUATION APPROACH TO SHAPE
OPTIMIZATION IN FLUID FLOWS

JEFF BORGGAARD® AND JOHN BURNst

Abstract. In this paper we apply a sensitivity equation method to shape optimiza-

tion problems. An algorithm is developed and tested on a problem of designing optimal

; forebody simulators for a 2D. inviscid supersonic flow. The algoritlun uses a BFGS/ lrust

i Region optimization scheme with sensitivities computed by numerically approximating

the linear partial differential equations that determine the flow sensitivities. Numerical
examples are presented to illustrate the method.

1. Introduction. The development of practical computational meth-
ods for optimization based design and control often relies on cascading
simulalion software into optiinization algorithms. Black box methods are
examples of this approach. Although the precise form of the overall “op-
timal design” (OD) algorithm may change, there is an often unstated as-
sumption that properly combining the “hest” simulation algorithm with
the “best” opliinization scheme will produce a good OD algorithm. There
are many examples to show that in general this assumption is not valid.
However, in many cages it is a valid assumuption and often this approach
is the only practical way of attacking complex optitnal design problems.
If one uses this cascading approach, then it is still important to carefully
pass informaiion between the simulation and the optimizer. Typically.
one uses a simulation code te produce a finite dimensional model and this
diserete model is then used to supply approximate function evaluations
to the optimization algorithm. Moreover, the approximate functions are
then differentiated ro supply gradienis needed by the optimizer. Although
there are numerous variations on this theme, they all may be formulated as
“approximatc-then-optimize” approaches. There are other approaches that
first formmlate the problem as an infinite dirnensional optimization prob-
lem and then use numerical schemes to approximate the optimal desigr.
All-at-once, one shot and adjoint methods are examples of this “optimize-
then-approximate” approach. Regardless of which approach one chooses,
some type of approximation must he introduced at some point in the design
process.

* Supported in part by the Air Furce Office of Stientific Research under grant 1 43620
92-1-G078. Interdisciplinary Center for Applicd Mathensatics, Department of Mathemas
ics. Virginia Polytechnic Institute and Suate University, Blackshurg, Virginia 24061,
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F19620.92-3-0078 and F 496:20-93-1-0280. the Nativnal Science Fuundation under grant
INT-#9.22440 and by the National Acronautivs and Space Administration under Caon-
tract No. NASL19480 while the author was a visiting scientist. at the Institnte for
Computer Applications in Scicnee and Engineering (ICASE), NASA Langley Research
Center. Hampton, VA 23681.0001. Interdisciplinary Center far Applied Mathematics.

Department of Mathematies, Virginia Polytechnic Institnte and State University, Blacks-
burg, Virginia 240¢1.
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The sensitivity equation {SE) method is an approach that views the
simulation scheme as a device to produce approximations of both the func-
tion and the sensitivities. The basic idea is to produce approximations of
the infinite dimensional sensitivities and to pass these “approximate deriva-
tives® to the optimizer along with the approximate function evaluations.
There arc several theoretical and practieal issnes that need to be consid-
ered when this approach is used. For example, there is no assurance that
the SE method produces “consisient derivatives.” This will depend on the
particular numerical scheme used to discretize the problem. However, the
SE method allows one the option of using separate numerical schemes for
flow solves and sensitivities, so that consistent derivatives can be forced.
We shall not address these issues in this short paper. The goal here is to
iHlustrate that a SE based method can be used with standard optimizaticn
schemes to produce a practical fast algorithm for optimal design. We con-
centrate on a particular application {the optimal forebody design problem)
and use a specific iterative solver for the flow equations (PARC). Many
flow solvers are iterative and for these types of codes, the SE method has
perhaps the maximum potential for improving speed and accuracy.

In the next section we describe the forebody design problem and for-
mulate the optimal design problem. In Sections 3 and 4 we review the
derivation of the sensitivity equations and in Section 5 we discnss mod-
ifications to an existing simulation code that are needed in order to use
that code for computing sensitivities. In Section 6, we present numerical
results for the optimal design problem and Section 7 eontains conclusions
and suggestions for future work.

2. Optimal design of a forchody simulator. This problem is a
2D version of the problem described in [1.4.8] . The Arnold Engineering
Development Center {ARDC) is developing a free-jet test facility for full-
scale testing of engines in various free flight conditions.  Although the
test cells are larpe enough to house the jel engines, they are too small
{o contain the [ull airplane forebody and engine. Thus, the effect of the
forward fuselage on the engine inlet flow conditions must he “simulated.”
Oure approuch Lo soiving this probient 15 tu replace the actual forebody by
& smaller object, called a “forebody simulater™ (FBS), and determine the
shape of the FBS that produces the best flow match at the engine inlet.
‘The 2D version of this problem is illustrated in Figure 2.1 {see {1].[4]. [§]
and {9}

The underlying mathematical modcl is based on conservation laws for
mass. momentum and energy. For inviscid flow, we have that

& Ul K
{2.1} §Q+@IF}+§1§F2-Q

where
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The velocity components u and r, the pressure P, the temperature T. and
the Mach number A! are related to the conservation variables, i.e., the

Fieune 2.1: £D Forclody Prolblem

P m

m F= mu+ P
muy

F (E+ Pju

components of the vector Q, by

uz= — v -, P=(y
(23) T=9(y - 1} (-‘- - =+ t2)> and A=

At the inflow boundary. we want to simulate a free-jel. so that we specify
the toral pressure P;, the total temperature Ty and the Mach number
Mp. We also set ¢ = 0 at the inflow boundary. 1If uy. P; and I} denote
the inflow values of the x-component of the velucity. the pressure and the
temperature, these may be recovered from #y, T, and M. hy
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The components of @ at the inflow may then be determined from (2.4)
through the refations

. _ih — = _ ¥ u?
@3 =", mr=pru, ny=0 and E:-v~?__1+ﬁ: 2

The forebody is a solid surface, so that the normal component of the
velocity vanishes, e,

{2.6) ‘ w4+ vy =0 on the forebody,

where n_ and 5o are the components of the unit normal vector to the
houndary. Note that we impose {2.8] on the velocity components u and v,
and not on the momentum components m and n. Insofar as the state is
soncerned, it is clear that it does not make any difference whether {2.8) is
imporedon mand nor muand v, sincem=puand n=prand p £ 0.
ft can be: shown that it does not make any difference to the sensitivities as
well. o

Assume that at r = 7 the desired steady state flow @ = Q(y) is given
85 data on the line {called the Inlet Refercnee Plane)

IRP = {(z. e = 3.0 <y < 6).

Also, we assume here that the inflow {total) Mack numnber My can be used
as a design (control} variable along with the shape of the forebody. Let
the forchody be determined by the cutve ' = I{2). o € 2 < 3 and let
- p={My.T{-3}. The problem can be stated as the follnwing optimization
problem: o

Problem FBS. Given data @ == Q{y) onthe IRP, find the parameters
¢° = (M3, T*()) such that the functional

1 ey 2
@7) 2w=g [ 1@t - Qi) 2y

is minimized. where Qo {r,y) = Q@ {r, 3. p} i the schition &
state Euler equations

\ ~0m-2r 2 0r
(2.8) G(Q.p)- ﬁIF:+§¥F2~9-

In the FBS design problem, the data Q is generated both experimen
tally aud numerically. In particular, the full airplane forebody (which is
fonger and larger than the desired FBS) is used to gencrate the data. Since
the FBS is “constrained” to be shorter and smaller, we shall consider the
optimization problem illustrated in Figure 2.2, The data @ is genernted
by solving {2.1)-{2.0) for the long forchedy in Figure 2.2.{a) and the prob-
fem is to find p” to minirnize J where the shortened TBS is constrained
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to be one half the length of the “real forebody.” This problem provides
a realistic test of the optimal design algorithm in that the data can not
be fitted exactly. Also, we note that we have a problern with shocks in
the flow field. As shown in [2], optimizatic 1 of flows with shocks can he
difficult and requires some understanding o. the imnpact that shocks have
on the smoothuess of the cost functional,

TESTCELL WALL

N '
INROW uTRow :
il EEIER
CENTERLINE FORESODY

(8) DATA GENERATED AT Mach #= 2.0 AND LONG FOREBODY

TESTCELL WaALL

OLTPLOW

INFLOW

CENTERLINE I SHORT  FOREBODY

(b} FOREBODY RESTRICTED TO 112 LENGTH

FIGURE 2.2: A 2D Optimel faredady Desiga Prodlen.

Clearly the statement of the problem is not complete Fur example.
one should carefully spe:ify the set of admissible curves 1'7-) and questions
remain about existence, uniquencss and integrability of “the” sclution Q..
We will not addre~« these issnes in this short paper.

Most oplimiutinn based design methads require the computation of
the derivatives 7 “Q..(r.y.p). These derivatives are called sensitivities and
various schemes hww been developed to approximate the sensitivities nu-
merically {see |7]. [S]. [10] and [11}). A common approach is to nse fi-
nite differences. In pamrular the steady state eguation (2.8} is snlved
for § and again for # + Ap and then £Q(z.y. p) is approximated hy

0}‘
R lz. ”A""Q"' 28 This method is often costly and can introduce

large »rrors Anot her approach is to first derive an equation (the sensitivity
equation) for $=Q.:(x,y,p) and then numerically solve this equation. We

(’]




ADA294785

54 1. T. BORGGAARD AND 1. A, BURNS

shall illustrate this approach for the forebody design problem. In the pext
two sections we derive the sensitivity equations. Although these derivations
may be found in 3] we repeat them here for comploteness,

3. Sensitivities with respect to the inflow Mach number, First,
we consider the design parameter M3, We will derive equations for the
sensitivity

P‘
(3.1) Q’EE%%E ’;‘: .
. E
where
O e O

3.2 - = A'E = = .
B2 rEmE "E=ar "=an A

The differential cquation system (2.1} has no explicit dependence on
the design parameter M¢. 5o that equations for the components of ' are
easily determined by formally differentiating (2.1) with respect to M7, The
result is the system

8Q'  8F or;

1.3 —— e el T {},
@33) at dr ' dy
where
m n'
3 ey B my' y e . o nw-kn'u
(341 Fy= rant 4’ and Fi= e = et P ,
(E+ P/ ~(E'+ P')u (L+Pp +(E"+ P
and where,
. ,  Bu , A , &P , ar
{3‘}} U= 5:*&3‘ = éﬁfg‘ P —— -{!;;‘_f:f- 3.ﬁd T = g:{g*

and where, through {2.3}. the sensit ivitics {3.2) and (3.5} are related by
= im‘ mp“ P=(r i}(f:' ! (u? 4 67) - plun’ 4 u")
=-m'- <5, ={y=- - 5Pl S} - plue’ 4 o'}
1 n 1 E 3\
(3.6 tfoon’— —=p and T' oy~ 1} (-'E’»- ~p —fud' e’y .
) P ' PRI ')

Note that {3.3) is of the same form as (2.1}, with a different flux vector.
In particular. {3.3) is in conservation form. As a result of the fact that {3.3)
is {inearin the primed variables, and that by (3.6) o', ¢/ and P’ are hnear
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in the components of @', (3.3) is a linear system in the sensitivity (3.1).
i.e., in the components of Q'.

Now, we need to discuss the boundary conditions for Q. Except for
the inflow conditions, all boundary conditions are independent of the design
parameter M2. Thus, the latter may be differentiated with respect to M
to obtain boundary conditions for the sensitivities. For example. at the
forebody where (2.6) holds, we simply would have that

(3.5) : ‘w'ny+v'ne =0 on the forebody.

Similar operations yield boundary conditions for the sersirivities along
symmetry lines, other solid surfaces and at the cutflow boundary. Note
that il insiead of (2.6). ono interprets the no penetration conditien as one
on the momentum, i.e., my; -+ a2 = 0 on the forebody, then instead of
(3.7 we would have that

(3.8) wmiy +a'n. =0 on the forebody

which is seemingly different from (3.7). However. (2.6) and (3.6) can be
ased to show that

(3.9) m'm 4 n'ne = p(d'm + v = i+ eed = pla'n L v)

so that. since p # 0, (3.7) and (3.8) are identical.

The inflaw houndary conditions for the sensitivities may be determined
by differentiating (2.4) and (2.3) with respect to the design parameter Af2.
Note that this parameter appeats explicitly in the right-hand-sides of the
equation= in {2.4) and (2.5). Without difficulty. one finds from {2.5) that

’ Y oo L1 ’ ‘ /
= =P - =17, my = pryy + uzp;,
P Tr I TI 1 1= prvyturp;

' ' 1 1,
(3.1 ny=0 and E= .—_—11’,' + ;z-u‘jp', - prugul,

where. frem (2.4),

. 7 =1 Ty . ¥ P,
T’—~( 2 ) (1 M2 Pl-—(2) (1 2miygn) SS
' 2 ey (I R -'Vf:)

, VT My, VT )
(3.11)and u,:‘:m-i-ﬁ]]: I i+ (5 - M.

2 d +F MY

4. Sensitivities with respeet to the forebody design parame-
ters. We assume that the forebody is described in Lerms of a finite number
of design parameters which we denote by 2, k= 1,.. ., K, and that the
forechody may be described by the relation

(2.1} y - S P P P a<r<3
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We express the dependence of the state varinhls @ on the raardinates
and the design parameters by @ = Q(t,z,y: A2 Py Py, ... Px). We have
already seen what equations can be used ro determi ¢ the sensilivity of the
state with respect to Af?, i.e., for Q'. We now discuss what equations can
be used to determine the sensitivities with respeet to the forebudy design
parameters Pe k= L., K. e, for

4]
P &Q iy
4.2} s —=
t ‘ Q}: é?g”g He
F 3
where
p i n ar
3 B M E . T o mdEpEa— k=1...., g
13 o ™ o o P, and £ 3P, k=1 K

System {2.1) has no explicit dependencee on the design parateters By,
so that equations for the components of @ are eastly determined hy dif
ferentiating (2.1} with respect 1o P, b = 1. K. This produces the
systems. b - ... A given by

0Qe | OFi | OFey

44 - -0,
(14) at dr dy
where
i n;
. miu.+mpt+ _ mibnn
Fa= mye+ e and [i2= nepdn =Py
(B4 Piu+ (L. + P {E+ Py +{E 4+ Py
(1.3)
and where,
Ve e Au i ap ar
oy we=gpe vogm Pogm M Te=gp

Moreover. by {2.3). the sensitivities (4.3} and {4.6) are related by

I m . I ] #. . .
o= ;rm.- - ;:}‘Pk. p={~-1 (f;: =P A T - plun 2 ..g,k}) ,

i n ; ) i, L . .
4.7} w = ;a;‘-—;‘:pt and 7 = 4{v~1} (;f:;,*;{fg - fuu -‘-s't':;%) .

for k=1... K.
Al benndary conditions except the one on the forebody also do net
depend on the farehody design parameters £ k= 1... ., K. For cxample,
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consider the inflow boundary condirions (2.4) (£.5). Differentiating these
with respect to P k= 1.... N yi'ds that

(4.8 pit =y =ng = k=l =Py gzt =0

at the inflow boundary. Nuw eonsider the houndary condition (2.6) on the
forebody. We have that on the forechady

(4.M nho_ _02
m o dr’

Combining (2.6) and (1.9} we have tha
(1 l()‘. U“(“" -r= U
alomg the farchady or, display ing the fuil funeanal dependenee on the co

ordinates and design parameters, we have au - pesnt {1, y) on the forebody,
and at any time 1,

wlt.r.y = ®r Py Pay o Py );Mg. PP ..P;,') %(r: PP P

(A1) —v{tzy=®e: P PrYAZ PPy Py} =0

We can proceed to differentiate (4.11) with respect 10 any of the fore-
body design parameters 4, & = 1,.. .. A, The result is rhat, along the
forchody for k= 1..... K.

a1 (f)u\ (m) Q) D (D0 [\ (a
e MGy T fly,) P \ar )" B \br) T \ae\ar: )

W

where u. v and their derivatives ate evaluatad at the forebody (1. y = ®(x)).

If an iterative scheme is used to find a steady state solution of this
system ((1.4}, (4.8}, (4.12)). then we assume that present guesses {or the
state variables 4 and v and their derivatives du /iy and gr/dy and for
the design parameters MJ and P, k= 1., K. are known. It follows
that the right-hand side of (4 12) is known as well and equation {1.12) the
boundary conditions along the ferehady for the sensitivities with respect
to the forehody design paranmieters, js merely an inhomogeneous versicn of
(1.10), the brandary conditien aleng the forebody for the state.

Let ur now specialize to the type of farebodics considered by Huddle-
stole, (3.9 e,

x
{4.13; S PP Pr) = E Peénln),
k=l
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where ¢.{r}, k = 1,..., K. are prescribed functions, e.g.. Bezier curves
{sce [6]). In this case,

ot G (02 _ dd,
{4.14) = di{r) and b2 (E}Pg) =0 {r),

ab;
and
. L day
(4.13) a_r‘hf* 7 (1)

Combining (4.12)-{4.15), onc obrains that. at any point {7, ${1)) on the
forehndy and foreach k= 1, K,

] d
(4.16) Z L M..(..‘f) z fﬁ P (@J)

For forebodies of the type {4.13), {4.16) gives the boundary conditions
along the forebody for the sensitivities with respect 1o the forchody design
parameters Py, b = 1., K. Tt is now clear that, given guesses for the
state variables u and 1+ and their derivatives Ju/8y and 8r/8y and for the
design parameters M7 and Py, k = 1,..., K, then the right-hand-side of
{4.16) is known.

Consider now the problem of minimizing 7{p} as defined above. Most
optimization algorithms use gradient information. In particular, if P de-
notes one of the shape parameters, then the derivative

a . * o A
Eé-i?}ﬁ:f{m =/; [U}, Q2. p}} Qoo 2.9.9) - Qly) > dy

may be required in the optimization loop. The sensitivity ’F’Q WER'S )
satisfies the steady-stare version of the wnesmm equations (4.4} In prac-
tice one must construct approximations fu 35, Q. 4. B) and feed this
information into: the optimizer.

Assume that one has a particular simulation scheme {finite differences,
finife clements, cle ) to approximate the flow Q. (7. 5. f) on a given g 'rnd
e

(4.18) Qulz.y.p) ~ Q. y. p).

as the “step size” h — 0. Given the design parameter L. one construcls a
grid {depending on p) and then compules Qulr. 5. 7) = Q.clz, 9. p). This
process may require some type of terative scheine, We will address this
issue helow. In theory, one conld nse the same grid and compuiational




ADA294785

SHAPE OPTIMIZATION IN FLUID FLOWS 59

scheme Lo approximate F%‘-Qx(r. ¥, D) so that one generales “approximate
sensitivities”

A . ] .
(4'9) [(E—qum(‘t'yxp)]h - 61,er(1';!/»}’)
as h — 0. Tt is important to note that in general

i} . a .
{4.20 ()EQ“’("“’)L # 37 [Qn(x.y. 7).

i.e. this approach may not provide “consistent sensitivities”. However,
some schemes do provide consistent. derivatives and even if (1.20) holds.
the error

. o N ] A
(4.211 Dy= [ ——Q.u(r. 4 ¥ e — ] . 5]
{4.21) £y r')!’;-Q'“I"mjh 7 {Or(z,u.0)]

may he sufficiently small so that the optimizarion algorithm converges.
Trust region methods are particularly well suited for problems of this type.
where derivative information may contain {small) errors. As we shall see

below, there are certain cases where [g%;(?:c(l‘,!hi’)] , can be computed

fast. and accurately. Hence, the SE niethod provides estimates for sensi-
tivitics that inay prove “good enough” for optimization and yet relatively

cheap to compute. A comparison of [ﬁ,:Q‘_L.(.r. y. pY R and various finite

difference approximations of T(;’T [@r(r. y.p) may be found in [3,

{t is important to note that the details of the computations needed
to approximate a sensitivity are nct the central issue here. For example,
the sensitivity eyuations (3.3) and (4.4} are viewed as independent partial
differential equations that must be solved by “some”™ numerical scheme.
Thie scherne does not necessarily have to be the same scheme used to solve
the flow equation (2.1). although as we shall see below, there are cases
where using the same scheme is a useful approach.

Also, note that the sensitivity eguations are derived for the problem
fonimulated on *he “physical” domain. If one uses a cowputational method
that maps the prohlem to a computational dumain (as does PARC), then
the SE method does not require derivatives of this mapping. One simply
maps the sensitivity equation (including the necessary boundary condi-
tions), grids the computational domain, solves the resulting transformed
equations and then maps back to the physical domain. If. on the other
hand. one mapped the flow equation (2.1) and derived a sensitivity equa-
tion in the computational domain, then to obtain the correct sensitivities
one would have ‘o compute the mapping sensitivity. Therefore, it is more
eflicient to denive the sensitivity cquations in the physical domain.

Finally, we note that the SE method described here has one additional
benefit. To compute a sensitivity, say E,—"’P—&-(,)c.:(z.y‘iv), then one first se-
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Jecis the parameter value §. constracts a;ampﬁtaxianai grid and solves for
{E%Qx,{zg ¥ ;’E}L . There is no need to compute grid sensitivities.

5. Computing sensitivities using an existing code for the state.
Suppose one has available a code to compute the state variables, i.e.. to find
approximate solutions of (2.1} along with boundary and initial conditions.
In principle, it is an easy matter to amend such a code so that it can also
sompuic sensitivities.

First, lev us compare (2.1) with (3.3). If one wishes to amend the
existing code that can handle (2.1} so that it can treat {3.3) as well, one
has to change the definitions of the flux functions from those given in (2.2)
to those given in {3.4). Note that the solution for the state is needed in
order to evaluate the flux functions of (3.4},

Next, note that {3.3) and (4.4} are identical differential equations.
Thus. the changes wade to the eode in arder to treat (3.3} can also be
used to treat (1.4). lu fact, as long as the differential equation and any
other part of the problem specification do not explicitly depend on the
design parameters, the analogous relations will be the same for ail the
sensitivities.

The only changes that vary from one sensitivily caleulation to another
are those that arise from conditions in which the design parameters appear
explicitly. In our example. for the sensitivity with respect to MZ. one must
change the portion of the ¢ode that treats the inflow conditions {2.4)-12.5)
sa that it can instead treat {3.10)-(3.11). In the problem considered here,
the nature {i.e. what variables arc specified) of the boundary conditions at
the inflow, and everywhere else, is not affected. Note that for the sensitivity
with respect to Af?, the boundary condition (3.7) on the forcbody is the
same as that for the state. given by {2.6).

For the sensitivities with respect to the forebody desipn parameters,
the inflow boundary conditions simplify to (4.8}, ie.. they become homo-
geneous. The boundary condition at the forebody is now given by (4.12)
or {4.18). Once again. the nalure of the boundary conditions is unchanged
from that for the state and only the specified data is different. For the
inflow boundary conditions, we may siill specify the same conditions for
the sensitivities, but now they would be homogeneous. The boundary con-
ditions along the forebody change in that they become inhomogeneous,
{compare (4.10} and {4.:8}).

In summary. to change a code for the state so that it also handles
the sensitivities, one must redefine the flux functions in the differential
equations, anid the data in the houndary conditions. The changes necessary
in the code to account for any particeular relation that does not explicitly
invelve the design parameters are independent of which sensitivity one Is
presently considering.

The previous remarks are concerned only with the changes one must
effect in a stale code in order to handle the fact that one is discretizing
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a different problem when one considers the sensitivities. We have seen
that these changes are not major in nature. Howover, there are additional
changes that may he needed when one attempls to solve the discrete equa-
tions. In the numerical results presented below we use the finite difference
code “PARC™ (see [4 and [8]) to solve the state and sensitivity equations.
However. the fcllowing comments apply equally well to other CFD codes
of this type.

Sinee we are interested in steady design problems, the time derivative
in (2.1} is considered only to provide a means for marching to a steady state.
Now, suppose that at any stage of a Gauss-Newton, or other iteration, we
have used PARC to find an approximate steady state solution of (2.1) plus
boundary conditions. In order te do this, one has to solve a sequence of
lincar algebraic systems of the type

(5.1) (1+A:A(Q;"‘)) ;;’*‘i':(,',i,"i'+AzB(Q’-h"")). n=0.0.2..,

where the sequence is terminated when one is satisfied that a steady state
has heen reached and where Qf,"’ denctes the discrete approximation to
the state @ at the time ¢ = nAf. We denote this steady state solution for
the approximation to the state by Q4. One problem of the type (3.1) is
solved for every time step. In (5.1), the matrix A and vector B arice from
the spatial discretization of the fuxes and the boundary conditions. Both
of these depend on the state at the previous time level.

Having computed a steady state solution by (5.1). the task at Land is
now to compute the sensitivities,. We will focus on Q’. the sensitivity with
respect to the inflow Mach number. Analogous resuits hold for the sensi-
tivities with respect to the furchody design parameters. Recall that given
a state, the sensitivity equations are linear in the sensitivities. 'Therefore.
if ane is interested in the steady state sensitivities, instead of (3.3) one may
directly treat iis stationary version

YAl ’
(5.2 2{_ + a—Fl =0.

dr dy
Since (5.2) is linear in the components of @', ohe does nat need tu consider
marching algorithms in order to compute a steady sensitivity. One merely
discretizes (3.2) and solves the resultant linear system, which has the form

(5.3) A(Qn)Q} = B(Q).

where Q) denotes the discrete approximation to the steady sensitivity, The
matrix A and vector B differ from the A and B of (5.1) hecause we have
discretiz-d different differential equations and boundary conditions. Note
that A and B in (5.3) depend only on the steady state @y and thus (5.3)
is a linear system of algebraic equ.trons for the discrete sensitivity Q.
The: cost. of finding a solution of (5.3) is similar to that for finding the
solution of {5.1} for a single value of n, i.e. for a single time step. The
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differences in the assembly of the coeficient matrices and right-hand-sides
of (5.1} and {5.3) are minor. Thus, in theory at least, one can oblain o
steady sensitivify in the same compuier time it takes fo perform one time
step in a state calculotion. If one wants to obtain all the sensitivities, e.g.,
K + 1 in our example. one can do so at a cost similar to , a.g., K+1 time
steps of the state calenlation. This is very cheap compared to the multiple
state calculations necessary in order to compute sensitivities through the
use of difference quotients.

Although {5.3) is in throry no more complex than one time step in
{5.1}. we ran solve {5.2} by using the same iterative {or another) schemne,
The simplest approach {but certainly not the optimal approach) is 10 use
the PARC rode to solve (5.2} by time marching, In particular, assume that

{) is a soluticn 10 (3.1). then the system
GA)  [ream@ner = @) + Ao,

“can be used to find () given 1’(}““” Thus, one makes an initial
guess for Q‘” and {Q} }*” and then iterates {5.1) and {5.1} simultaneously.
Also. the same scheme can be used to compute any @ = 3§-* ie.,

(55) [T+ M0QM] @ =[Gy + Ami@l)

In practice. these “optimal” estimates of speed up are rarely achieved.
Moreover. as noted above. it is important to note that finite difference (FD)
and sensitivity vquation {SE} methods do not necessarily produce the same
results. Since the ultimate goal is 1o find useful and cheap gradients for
optimization. the most important issue is whether or not the SE method
combined with an optimization algorithm produces a convergent optimal
design as fast as possible. We have tested this schemie on the forehody
design problem and the next section contains a summary of these resnits.

6. Anoptimal design cxample. Inorder to illustrate the SF method
and to test its use in an optimization problem, we used the PARC code as
described above 10 compute sensitivities and the used these sensitivities in
2 BFGS/Trust Region scheme to find an optimal shortened forebody sim-
ulator As shown in Figure 2.2, dats was generated by solving the Fuler
equations over the long forebody at a Mach number of 2.0, The objective
is to find a forebody simulator with length one half of the long forebady
and such that the resulting flow matches the data as well as possible, i.e.
minimizes 7 along the outflow boundary.

The shortened forebody was parameterized by a Bezier curve using two
parameters. Thus, there are three design parameters p = (MZ. Py P2).
The algorithin used in this numerical experiment was based on using the
PARC code to simullanecusiy smxrd: to the steady state solutions of the
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flow and sensitivity equations. We made no attempt to optimize the algo-
rithm sinze the main goal was to test for convergence.

The design algorithm proceeds as follows. First, an initial guess for the
optimal design is made, i.e., we select a p® = ((.wg)" , P, P:?) A good
selection of initial parameters can be made knowing the operating condi-
tions of the aircraft and some rough guess of the shape from the aircraft
forebody. In our example, we chose M as the inlet Mach number from the
computation which generated our data. The initial guess for the parame-
ters were those used to generate the long forebody (although corresponding
to different x-locations). These parameters. p®, are used to generate a grid.
the inflow and forehody baundary conditions for both the flow (2.1) and

sensitivity eqnations ({3.3) and (1.4)) and an initial gness for bath Q';f':

and (%; ')(:). In our example, a tough guess for the flow field Q",:” nses
the constant inflow boundary condition throughout the flow domain. Like-
wise, the initial guess for (Q')Ln:' 1s taken as the inflow boundary conditions
{given in equation (3.10)) throughout the fiow domain. The initial guess
for (Q» (,_0) is initially taken as zero {except on the forebody). ‘The systems
(3.1), (5.4) and (5.5) are then solved simultancously (in our case the left
hand side matrix is the same for (5.1) as for the sensitivity equaticns {5.4)
and (5.5) i.e. A= A") for the updated QU (@)L (-j—,‘l‘)?’ and (gg)',”
The updated Qi") is then nsed to formulate (5.1}, (3.4) and (5.5) and solve

. {a+41) . . )
for (P)"*1" and (s“’: )h . Then one iterates until the desired conver-

gence is achieved. In our example. the residuals, AQy = {Q:'“.’ - Qg,""'}

were converged to approximately 10725 (in 800 time steps). The outflow
data @y and (%Q)h are then used to compute J(p%) and V.7(p").

‘The optunization algorithm consisted of a BFGS secant niethod con-
pled with a “hook” step model trust region method {3]. The initial Hessian
was obtained by finire differences on T 7(f). The function aud gradient
information needed by the optimization algorithin is obtained hy calling
the modified PARC cnde with p = p,

This algorithm was tested for the case where the forebody simulator
was allowed to have the full length of the body generating the data. In this
case the optimization algorithm produzed exact data fits. ie. J(p") =0
and it recovered the parameters used to generate the data. However, the
more realistic test (constraining the length of the forebody simulator) alse
produced a convergent design and reduced the cost funclional significantly.

Figure 6.1 shows the flow field over the long forebady. Observe, that
there is a shock in the flow. As noted in |2', shooks can cause difficultics
if one is not careful in the selection of an appropriate numerical scheme.
High order schemes can produce (numerically generated) local minimumn
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that can cause the optimization loop to fail. This problem is avoided Lere
because the nunierical viscosivy in PARC (required for stability) is sufficient
{o “sinooth” the cost functionsl {see 74} for details).

ricure 6.1:  Long Forchody {Ostfow Livte to b Matcioed;
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Figure 6.2 shows the shape and flow field of the optimal shortened fore
body. This design was obtained after 12 iterations of the optimization loop.
Figures 6.3 -6.6 show the 1°f, 274, 379, 5% and 12" jterations for each of
the flow variables.

‘ v

Density X-Momantum

Y-Momentum

FIGURE 6.2: (O ttnal Shortensd Forebady Flow
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Iteration 1 Iteration 2

Iteration 3 Iteration 5 Iteration 12

0.20 0.70

FIGURE 6.3:  Hirctisr to Optimal Foribody Design: Drraity
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FiGureg 6.4:

teratian ¢0 (Jotimel Forebady Design Eneryy
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Initial Guess Iteration 1

0.20 0.50

FiGURr 6.5 Heratian fo Optimal Farebody Dengr: X Corsporent
s Mamestwir
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Initial Guass Iteration 1 Iteration 2

FIGURF 6 6:  Paeration vo Ortrnad Farededy Desigr: Y-Conpunent
of Momentym
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The initial guess for the parameters were

= ((M3)". P 1) = (20.0.10.0.15)

and
J(°) = 3.2339.
The “converged” optimal parameters are
po = p'? = (2.020,0.294,0.156)
with
Jip®) = 02220,

Observe that the cost function was decreased by more than 93%. Figures
6.7 6.16 show a comparison of the flow lields for the optimal shortened fore
bods simulator and the data. The optimization loops converged rapidiy.
For example, J(p%) = 0.2334 and J(p*) = 0.228%. This is due to the fact
that the shock loeation was found quickly.

e

Optimal Design Long Porshody ({(Data)

0.20 0.70

Frione 6.7:  Cemperoen of Gptimael Shorten f snd Lovg borelady:
Dersity
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4 K ST

Optimal Design Long Forebody (Data)

0.20 1.20

Frovae bos: Comyorscn of Opisecd Snose ol wnf Loy burtos,:
Frergy
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0.20 ¢.50

FGURE 6% Comprrissrn o Opinal Shovetined o8 Loag Fomledy:
X-Comaprnend of Monntan
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Optimal Design Long Forebody (Data)

0.00 0.20

FIGURE 6.10:  Cewporscn 3f Opomel Shartened ond Ling Fore
Ldys YoCermpanent of Mormsntin

MNote chat althoueh the flaws ars elese, there 1< a spnificant errsr near
the forehody. This can sy be seen i the plots i Fiecres 511611
1t is worthwhile to noie that the mateh is goud consideting the fact the
chortened forebady 15 constrained ta b one hall the length cf the “real”
forehody and only two Bezier paramcters are eed to esde] I8Y Ttis
also unportant Lo note that the sheock is captured by the optunal design
I particular, ot-erve in Figures 8.3-6.6 how the optinization algorithm
“Jimpes” the stortened forebody so that the aptimal shape has a blur:
newe  Flus is ueceszury in order 1o generate the eorreet <hock location ar
the entfow,
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7. Caonclusions. The minerical experiment above illustrates that the
SE methad ean produce sensitivities suitable for optimization based de
sign. There are a2 number of interesting theorerical issues that need to be
addressed in order to analyze the convergence of this approach. Moreover.
one should investigate “fast solvers™ for the sensitivity equations (multi-
grid, etc.) as wetl as develop numerical schemes that are not only fast, but
produces consistent derivatives when poseivle.

Finally, we note that we have conducted a number of timing tests
which compute sensitivitics ta compare the S method with the finite dif
ference method. In particular. we ohserved that for the preblem ahove
{with three design parameters), the SE methad needed only 585 of the
CPU time required by finite differencing. When twenty design parametrers

\




ADA294785

78 J. T. BORGGAARD AKD 1. 4. BURNS

were used, the SE method produced these sensitivities in ahout 3R% of the
time required by finite differencing. These early numerical results indicate
that considerable computational savings may be passable if one extends and
refines the basic SE method presented here.
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QUASI-ANALYTICAL SHAPE MODIFICATION FOR
NEIGHBORING STEADY-STATE EULER SOLUTIONS

J.8. BROCK® AND W.F. NG*

Abstract. Aerdynamic inveree design methods which are governing cquation con-
sistent are generally limited to the Full Potential equations. Consistent dusign methods
use identical governing rquationa for all fluid dynamic segments of the algorithm. includ-
ing shape modification. Thi« ensures that alf relevant physical information is included
within each design estimate. and therefore, a minimum number of analysis/design it-
erations are required. Thic veport preeents a new, and consistent, shape modification
method for future use within a direct-jterative inverss design algorithm. The method is
simple, bcing developed from a truncated quasi-analytical Taylor's series expansion of
the global governing equations. The method is general, since it may uee either the Euler
or Navier-Stokes equations, any combination of numerical techniqnes, and any number
of spatial dimensicns. The proposed method also includes a wniqus iterative algorithm,
and new geometryfgrid constraints, to solve the over-determined design prohlem. An
upwind. cell centered. finite-volume formulation of the two-dimensional Enler equations
is used within the present effurt. The method is evaluated within a symmetric channe!
where the design variable is a pud-channel riunp angle which is neminally 8 = 5°. Tests
were conducted for three target vamnp angle perturbations, A6 = 2%, 10%, and 40%, and
three inlet Mach numbers, M = 0.30, 0.83, and 2.00. Fcr a single design estimare. nsing
design like test conditions, the new method is demonstrated 1o accuratelv predict geom-
etry shape changes. This includes the transonic test case with an cxtreme 40% design
variabls perturhation where the target geometry was predicted with 95% accuracy.

1. Introduction. The obility of Computational Fluid Dyuamics {CFD)
methods 10 solve direct. or analysis, problems has progressed rapidly in the
last two decades. Direct solutisns for complex two or three dimensional {2-
D or 3-Dj configurations using the Fuler or Navier-Stokes (N-S) equations
are common. The direct problem is characterized by the specification of
the geometry and boundary conditions (BC's). followed by a solution of
the field equations governing continuity, momentimn, and energy exchange,

Of equal importance to the CFD community is the aerody namic design
problem. The design problem determines the gecinetry required to support
a givenset. of BC's, ph sical constraints, and target Jesivn goals. The target
design goals may be a surface function, such as surface pressure, or a global
parameter, such as a shock frec flow field. Developiuent of more efficient
and effective asrodvnamic Jesign technoingies continues to receive great
emphasis, and is the focus of the present rescarch.

There arc many ways in which aerodvoamic design methods can be
catergorized {1-3]. This report considers two general categories: optimiza-
tion design and inverse design. Inverse design methods may be subdivided
as classical [4-7]. shock-free [%.0]. direct-iterative [10-12]. and stream-tuhe
methods [13-16]. Al of these metheds possess unique strengthe and spe-
ciahzations, and each will continne to serve the desigu comnmunity.

* Mechanical Engincering Department, Virginia Pelyrachniz Institute and State: Uni-
versity, Blackshburg, VA 24301-02733.
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Optimization design methads are generally considered the more ad-
vanced of the two aerodynamic design categories. One reason may be the
capability to perform design tasks using the Euler or N-§ equations for all
fluid dynamic portions of the method. This includes both the analysis and
sensitivity derivative codes which arc coupled within a design optimization
algorithu.

Inverse design methods use various sets of governing equations and im-
plementation algorithm’s. Some methods use the Euler of N-S equations
as part of the algorithm, while others use the Full Potential (FP) equations
exclusively. Some nethods conple a bounduary layer (BL) model with the
FP equations for the initial and intermediate direct sulutions. However,
the relationship within each inverse design algorithm which actually pre-
dicts shapes, the design methodologies. are in general limited to the TP
equations.

Direct iterative inverse design methods are coneeptually simple. rela-
tively ensy 1o impletuent, and so the most commonly used inverse design
method. These are also considered 10 be the meore advanced inverse desizn
method since they msy use any existing CHD analysis code. and therefore
governing equations, as & portion of the method. Direct-iterative methods
require an nitial geometry, BC's, an initial solution, and a target surface
pressure profile.

Direct-iterative inverse design methods use two distinet code portions.
A shape modification code is conpled with an analysis code. and the design
geomcetry is determined iteratively. The shape modification code contains
the relationship between the difference in the initisl or enrrent surface
function and the target function. to the change in geometry neressary to
obiain the target. These relationships are termed Body Shape Rule’s (BSR)
[12]. .
Separation of the direct and design purtions of the direct-iterative
moethod provides benefits and disadvantages. The mast advanced analysis
code, using the most descriptive sat of governing cquations, may be used
for initial and intermediate direct solutions. The algorithm separation also
allows relatively simple BSR’s to be distinct from, but equally valid for,
any set of analysis governing equations or CFD methods. However, cur-
rent BSR's are based on Mach number dependent potential theory, This
disadvamage requires a differout BSR. to be used witlhun earh flow regime;
suhsonic. transonu s, and supersonic,

Anather disadvantape of these popular inverse design methods is that
BSR's are only local. or surface, applications of potential theery. This is
in eantrast to the global Euler or K-8 equations. Governing cquation com-
patibility, that is anal sis and shape madification with the same governing
equations. at either the Fuler or N-8 level is therfore not presently possi-
ble. Compatible. or consistent, direct iterative  hape medification. and so
inverse design, is then linited 1o the FP cquations

The lhaitation of consistent inverse design at the FP level dors have
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exceptions. A unique stream-tube method has been successfully demon-
strated for inverse design using the potential equations and includes ro-
wational effects [16]. Another type of stream-tube method uses the quasi
1= D Euler equations within a 2 — D coordinate system [15]. These meth-
ods provide both direet and inverse design solutions in 2 D which satisfy
their respective equations. However, consistent extension of these design
b methods to include viscous effects, or 2 5 ~ /7 extension, is not possible.

A general inverse design method would be equally valid for any set of
governing equations, CFD technolagies, and number of spatial dimensions.
Also, governing equation consistency would ensure the inclusion of all rel-
evant physical information within each shape modification estimate. This
may reduce the number of shape modifications required to satisfy the de-
sign targets. and would be inherently Mach number independent. The goal
of the present, research is to develop and test a shape modification method
with these qualities which my be incorporated within a direci-iterative in-
verse design algorithm.

Following this intreduction, the fundamental development of the pro-
posed new shape modification method will be presented. A truncated Tay-
lor's series expansion of the discrote, global governing equations is the basis
of development. The truncated! series relates solution and geometry changes
with quasi-analytical flux Jacobian matrices. This simple and general con-
cept has previously boen demonstrated to provide consistent neighboring
steady-state solution predictions and sensitivity derivatives [17-22]. The
attributes of the truncated scries satisfy the goals of the present research
and it pravides a general and consistent means for shape modification.

The present research is the first attempt to use the truncated series
within the area of shape modification, and therefore inverse design. A
aumber of unigque challenges exist in this effort which were not of conzern
in the previous studies. Implementation considerations for the 2 — D Eu-
ler equations and a unique solntion algorithm will be presented. A simple
channel geometry. and design-like test paraineters will then be defined. Re-
sulte of the new method will be presented and discussed for tests including
subsonie. transouic, and supersonie inlet Mach numbers. and a summary
of the research will conclude the document

2. Theory. In this section the basic theory and fundamental equa-
tions for the nev shape modification method are presented.  This initial
development is general in nature. In a following section the particular set
of governing equations used in this research will be presented, along with
the specifie details of the implementation.

The non-lincar. time-dependent. coupled partial differential equations
for either the Enler or N-§ cquations ean he expressed as

. aQ e
(2.1) T +RiQ)=(

where @ s the vector of convarsed variables The vector @ contains com-
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binations of density, component velocities. and energy terms. The size of
@ and the residual vector, R(Q}. depends on the number of spatial dimen-
sions chosen. The residual represents Lhe steady-state form of the governing
equations and is an explicit function of the conserved variables. Al steady-
state conditions the residual is exactly zero and the governing equations,
together with proper BU's. are satisfied.

The numerical description or discrele version of the residual can take
nany forms. ‘Two choices herein are either finite-difference or finite-volume
spatial discretization. and either upwind or central difference flux evalua-
tion. The culmination of these and other decisions determine the set of
CFD technologies used, which in sum determine the CFD method. Irre
spective of the CFD method chosen to describe the residual, the governing
partial differential equations must be discretized over the domain in ques-
tion. The semi discrete form is then expressed as

(2.2) 9t R @) =0

dt Fi .
where the £, k) indices are used here only as an example for (r_y) coordi
nates in 2~ D. This expression represents one equation within a system of
non-linear, coupled, erdinary differential equations. The system of equa
tions may he integrated in time for unsteady solutions given a proper set
of BC's and initial conditions (1C).

A conunon practice in determining steady stare solutions to the gov-
erniug equations is to integrate the coupled system in pseudo-time from a
reasonaldy selected set of 1. Lhis is performed in aither an explicit or
an implicit manner Heratively, where implicit integraticn is preferred. the
Euler implicit, or backward Euler, tine integration method is comuscaly
used.

f IR imain = i o1Om — o
(23) {3-;-.- 30 }{ AQ} = ~{KMQ)} - mAl)

Here {"AQ} is the finite difference for the vector of disrrete conserved
variables between the {n < 1} st and the {njth time level.

(2.4) {7AQ) = {@" ') - {Q"}

The explicit dependence of the governing ~quations on the conserved
varighles, @ has heen emphasized shove, Whar is understoad, but net
explicitly showu, is the deprudence on the diseretized domain. the grid,
which on the houndaries includes the bady geomatey, This geometry /grid
dependence is generally not expressad since direet schations generally nse

a fixed grid with only the discrere values of the conserved variables heing

of interest. .

Te this point, only common and well understood analysiz coneeprs hive
becn presented for subsequent comparison. Hewever, the geometry /grid de-
pendence of the residual bezomes equally important when computaticnal
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design methods are considered. The discrete residual vector is then explic-
itly defined to be a function of both the dl:creto solution vector. @, and
discrete geometry/grid vector, X.

i (2.3) {R} = {R@Q. X))
| The vector X represents the physieal (x,y) coordinates of the discretized

geomelry and domain.
(2.6) X=(zy

The new shape modification methrnd begins with the discrete residual
system of equations. Equation 2.5. Consider two non-linear, steady-stare
solutions to the governing equmona Q1 and Q. which were ohrained on
two similar grometries/grids. X1 and X, A relationship between the solu-
tions and geometries/grids can he obtained with a Taylor series expansion.
in both Q and X, from the first to the second solntion and geometry /grid.

[91,(Q. )

@D (RQ.X) = {RIQ.T)) + ] (20)

| 86Q
{ﬂ%(%}]] {AT)

4+ 07AQ). AQAN, (AN)Y

The vectors AQ sud AX are defined to be the finite change in conscrved
variables and geowwtrizs/grids between the salntinne

(2.8) {aQ1 = {Q-} - {Q)
(2.9) {aAX} = {Xu} - {T}

If the two solutions and geometries/grids are closely related ther the
higlier-order rerrms of the serics can be truncated for a formally first-order
accurate equation. Alse, sinre both soluticns are au steady »1ate cond.i-
tions, both residual versors are exactly zero ard cau be dropped to obtain
Eqnation 2,10,

@210 [.,13,("3 \,]{ Q) - (uh‘sQ \y] {AT] -0

Fhis expression is termeod the standard prediction /design equation and
was first developed by Taylor. et al an 1931 717, The fun:tional depen-
dence of the Lsopere residual on bath the soliticn vector and the geom-

stey /grid eocrdinates iy not = new corncept. However. sxploitatisn of this
property in conlancting with the truncated Taylor's eorive expansiorn is a
whiet has ot Feen fully explored,

sunple et poweriu! too!
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The relationship between any finite change in solution, AQ, to the cor-
responding finite change in geometry/grid, AX. is quite evident in Fqua-
tion 2.10. The vectors AQ and AY are related by two flux Jacobian matri-
ces. 8R/8Q and R/OX, which are derived from the global, diserete form
of the governing equations. Therefors, both Jacobian matrices are quasi-
analytical expressions and are explicitly derived from the flux evaluation
method of choics.

‘The sensitivity of the governing equations to the sclution variables,
SR/8Q. is a standard matrix used within implicit analysis algorithms. such
as Lquation 2.3, The shortened phrase finx Jacobian is the commonly used
term for this matrix. The sensitivity of the governing equations to the
geometry/grid. #R/5X , is the focus of the present research and represents
a new BSR for dircer-ierative inverse design methods. This is & relatively
niew matrix within the CFD) community and requires special distinction.
The short and simple phase metric Jacohian. while strictly a misnomer, is
suggested and used throughout this report.

The standard prediction/de<ign equation can be used in many ways
a finite change in the geometry/grid ix specified, AX, then the geometric
forcing function, F,. is known and a change in solution can by predieted.
AQ. In this format the expression is termed the standard prediction equa-
tion and the results are peferred Lo as geometric solution predictions,

8R{Q. X} _ [ARQ.XV] = .
(2.11) {———a—é—-—} {3Q) = - { s } {aT) = (£
Noste that the subseripts have been dropped here for expedionce, ansd will
be shown subsequently only whe n necessary for clarity.

Geometric sclution predictirms have heen demnrstrated for both the
21 Buler [17) aned Thin Laver N-§ {TINS) [21]1 equations. Non-geometric
solution predictions bave alses been demonstrated with a modifed version
of Equation 2.11 [1x} These sobution predictions are driven hy variation of
non-geometric desizn variables sueh as tnlet Mach nminnber. angle of atrark,
and exit pressure. The ron gecmetric form of the standard prediction equa-
tion is developed in the saume manper as sbove afrer the duerete resdua’
is expressed as an explicit {unrticn of the non-geometnic design vanshles,

The maijor use of the standard predictinn equntion has been o oth-
ciently obtaining sonsitivity derivatives for use within optinuzation desipn
algorithms [1% 22]. Thic is also accomplished by functional deprndenre
modification of the discrete residual 1o include specific design varinbles,
together with repeated use of the chain rule “Lhese sensitinty derivat v
have been obtained with <he Euler and 1L 48 equations for bl finee-
difference and hnite volumne discretization methods central fferrne and
upwind flux eviluations. and s both 2D and 310

The present resenrch builds on the suecess and atibty of the stan-
durd prechict®e v ‘degn rquation in the aren of inverse decign thrrugh shape
madificatics, W a finite selution chang is speaified, A tuen the <o utien
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forcing function. F;. is known and a shape modification prediction can be
found. AX. In this format the expression is termed the standard design
equation and the results are referred to as design predictions.

2.12) f'f"'—(‘?-s-"-'l} (AT} = - ["”(Q "] {AQ) = —{F,}

The standard design equation is the fandamental equation for the pro-
posed new shape modification method. This cquation enables shape modi-
fication to be peefonised with the same governing equations, and successful
CTD rechimigues, as crigiually selected for the arnalysis solution. This is
the essence of conststent design and is guaranteed since the method begins
with the discrete version of the governing equations. Also. since the govern-
ing equations apply fur all flow regimes. the consistent shape modification
methed is simuarly Mach number independent

Since the higher-arder terms were trupcated in the Tayior series ex.
pansion, rach stape modification is strictly first-order accurate. Use of all
domain and BC equations alse produces a global system of equetions whick
is more costly to colve than current focal methods. However, consistent
design ensures that all relevant near and far-field physical infurmation is
inchuded in the metric Jacobian BSR. Incorporating all the relevant physics
within each shape modificaticn estimate may reduce the total nuniber of
analysis/design iterations.

In summary. the dual functiona! dependence of the diserete residual
on Q and X, in conjunction with the truncated Tayior series expansion.
provides a new shape modification methed which is simple in concept and
straightforward in application  As no restrictions were placed in the de-
velupment. the new method has general applicahility. That is. it is not
restricted to any set of governiug equations, CFD technelagies, or sparial
dimensions. In the [ollowing sections specifie details of implementation wilt
be discussed far the 2-D Euler equaticiis.

3. Euler Equations. The governing equations used in the present
tesearch are the 2. Fuler equatiens. After a transformiation from cartesian
(. y) to generalized (£.n) coordinates these cquations mav he written as

1 0(2

3.
(3.1 773

— e H(Q} ==

where J is *he determinant of the Jacohian matrix of the cocrdinate trans
fortnation. The eonserved vanables and residual are

(3.2 Q {p.pu.pe:.pe:}r

o r . 3 ".,
3.3) mQy. L1, 0@
I3 oy
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where p is the density, u and v are the velocity components in cartesian
coordinates. and ¢q is the total energy

2 2
(3.4) w=et T2

and ¢ is the specific internal energy. Also, the 2— D primitive variables ure
defined below and include the pressure, P,

(33) g={p.uv,P)7
‘The generalized coordinate flux vectors are given as

6o FiQ) = §1(@Q)+ 26(Q)
' GQ) = £F(Q) + 2G(Q)

with the cartesian counterparts given in Fquation 3.7,

@.7) FQ) = [pu.pu® + P, puv, pub]T
wh G(Q) = Tyt puv, po® + P, prhy)T

The stagnation enthalpy, hg. is defined in Equation 3.8
{3.8} hy = e, - -}j
f

and the calorically perfect ideal gas law is used 10 evalnate the pressure,
P. with the ratio of specific heats is equal toy = 1.4

(3.9) P=(y=1jp (a,;- - *)

These governing vquations are compotsti mally deseribed in an inte-
gral. conservation law form, using an apwind. cell-centered finite-velume
formulation [23] This formulation is ideutical for both the analysis and
shape modification solutions. and is intended for structured H.0, ar C
type grids within the present recearch.

To enaure that additional errors arc not added to the original series ex-
pansion, Van Leer's continuonsly differentinble flux vector splitting method
is used [24]. Sccond order upwind and third order upwind biased primitive
variable extrapolation is performed in the stream wise and normal direc-
tions respectively. Also, both flux and wetric Jarobian matrices require
propet Hnearization of all boundary equations.

4. Incremental Normal Equations. The global nature of quasic
snalytical shape modification requires the inverse of the metrie Jarcohian
matrix. Since the present research is the first astessment of the standard
design equations potential for shape modifieation. it is also the first at-
ternpl of this inversion  This section discusses twee fnversion difficulties
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and presents the Incremental Normal Equations (INE) as a simple solution
algorithin which circumvents these. However, first consider the vector AQ
in Equation 2.12 as known. Together with the flux Jacobian matrix this
vector defines the solution forcing function, Fy, for the standard design
eauation.

The first difficulty encountered in solving the standard design equation
is the evaluation of cach Jacobian matrix, and the inversion of the metric
Jacobian matrix. Both the flux and metric Jacobian matrices must be
evaluated exactly to get the proper solution for AX. This requires the
proper linearization and inclusion of the BC equations within each matrix.
The proper solution for AX also requires a non-iterative inversion of the
metric Jacobian which is cestly in terms of storage and computational
effort.

The second difficulty encountered in solving the standard design equa-
tion for AX requires an examination of the size of the metric Jacuhian
matrix. Recall that the governing cquations were transformed from 1 carte-
sian. (x,y), to a generalized, (£, 1), coordinate system and the domain is
discretized. In the present effort, (j, k) corresponds to the (£.5) direc-
tions respectively. with JDIM and KDIM defined as the maximum (5, k)
dimensions.

The total number of domain governing and boundary BC equations,
and the total number of physical (r,y) coordinate unknowns within the
domaiu are given by m and n respectively. Both the number of equations
and the coordinate unknowns are functions of JDIN and KDIM as defined
in FEequation 4.1.

m = (JDIM + 1)K DIM + 1)(4)

(4.1 i = (J DIMY(K DIM2)

These values define the size of the flux and metric Jacobian matrices, and
the AQ and AX vectors as shown in Equation 4.2,

aRQ, X) T _ _[|aRQ. )
(4‘2) 5:\—' ]mxr {A-\ }nxl = [ (.'Q ]m'"' {AQ}N!X

—{rg}vv\x]

Ther are approximately twice the number of vquations, m. as there are
unknowne, n for the 2.- D equations considered. {In practice, BC equations
are ot solved at the domain corners and thetefore m skould be reduced
by sixteen but this will not be further noted )

Conststent. acrodynamic inverse design with the Enler or V- S equa
tions is a naturally over-determined problem. 1he original 2 - D fluid
dynanne partial differential equation has four equations while enly two un.
knowns for shape madification, (2. y). Governing and BC equations are
also solved at more positions within the diseretized domain than there are
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physical coordinate positions. Together, these factors produce a massively
over-determined systemn of linear equations and so an exact solution for
AX is not possible.

In summary, two difficulties exist for the quasi-analytical shape mod-
ification solution. The first is the requirement of exact matrix inversion
which is costly. This is feasible for 2 — D cases, but it is prohibitive for
3 — D. The second problem is the over-determined nature of the system.
Neither of these difficulties is unique to the 2— D Euler equations. The first
problem is universal to governing equations, CFD techniques, and spatial
dimensions. The second problem, the over-determined nature of the ays.
{em. is also universal. The ratio of the number of equations to the number
of unknowns will change slightly for 3 D, but a massively over-determined
system of equations will remain.

Two sim; .« techniques ars now applied to the standard design equation
to overcome both difficuities and to obtain the best solntion possible. First,
it is beneficial to define new terms and re-cast Equation 4.2,

[67(Q, 7))
%

ol Jmxn

{43} Am X - M :r,xl = {é:f}nxi

(0k(Q,%)] .
{44} bnﬂxi = —’“i%—’% i-‘ig}rrzxi = {f;}mxl

- o TR

‘The standard design equation is now simply defined in Equation 4.5

{4.5) Amuninxt + by =0

The first technique is to apply Newton's iterative method (o the linear
system in Equation 4.5 as shown in Equation 4.6,

{4.6) Auxnd2 1 = ~{Apantoxt F bhneilma

This technique is typically applied to root finding methods for systems
of non-linear equations. Hecently however, this method was successfully
detnonstrated 1o reduce the storage and computational cost of the solution’
for @ linear system [25].

The standard design equation is now in incremiental, or iterative form.
Az the iterations converge, As approaches #ero such that any approxima-
tions to the left-hand-side {LIIS} metric Jacohian matrix will not affect
the solution of the right-hand-side {RHS} cquations. The LHS matrix may
be partitioned such that large 3 - I problems ran be efficiently solved.
Approximations may also stabilize its inversion and reduce the cost of its
evaluation. These approximations include inconsistent LHS/RHS numer
ical evaluation and the addition of a diagrmal rerm. Alste, any common
iterative algorithm can be used to solve these equations.
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The over-determined nature of the standard design equation remains
as the socond inversion difficulty. The best solution possible for AX would
occur if each equation in the system is satisfied in a least-squared sense,
Singular Value Decomposition (SVD) is one popular least-squared method
[26). However, the SVD method is storage intensive and involves arbitrary
tolerance fillering of the singular values. Both of these properties eliminate
SVD from consideration for fluid dynamic problems which are typicall;
large and include complex physical phenomena.

The normal equations methed of solution also obtains a least-squared
soiution for an over-determined linear system [26]. Simple pre-multiplication
of both sides of Equation 4.6 by the transpose of the metric Jacobian ma-
trix, AT, defines the normal equation format as shown in Equation 4.7.

(4.7) [/\meA,nyn]nanan) = -Az,.x.n(u‘!mxn Znx:+ binxi)mx1

The linear system is now determined in A:. and AX is found in a
least-squared sense. This total method, Newton's root finding methad cast
in incremental formulation, defines the INE's. ‘This algorithm is the key
development within this research, and therefore is an integral part of the
proposed method. The INE’s provide an algorithm which is not limited
to any set of governing equations, CFD teclnologies, or number of spatial
dimensions.

Recall that the INE’s provide the flexibility to approximate the LHS
matrix and still obtain the least-squared solution for AX. Lherefore, both
metric Jacobian matrices within the normal matrix, A7.4, may be different
in a numerical sense than cither of the two which appear on the RHS. 1he
original normal matrix may then be replaced by an approximate one as
shown in Equation 4.8.

(4'8) [A:,n.‘xm‘emxn]u wn {"1an;-'1vnxnjn X

An efficient method of approximating the normal matrix would use
identical metric Jacobians for its evaluation, and this alse produces a sym-
metric normal matrix. Al Jacobiany on the RHS must be evaluated in a
numerically consistent manner to obtain the lcast-squared solution. There-
fore, both the LHS and RHS sides of the INE's arc scparately consistent in
a numerical sense, while each side may be distinct from the other.

While the INE's provide the hest prssible solution for the over-determined
linear systeni. a least-squared solution. additional errors arc introduced.
This winimized error solution does not satisfy each equation within the
systemn exactly and Az = (AX) is found only in a least-squared sense,
Azps. The least-equared error of the solution, ers, is then additional to
the second-order terms truncated in the original ‘Taylor's serics expansion.
This error is the square of the I3 norm of the standard design equation with
the converged vector 215 as shown in Equation 4.9.

(4-9) ”(Amxn"-'l‘ﬁ‘n'ﬂ "'bmxl)mx:”‘.' = yeLs
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Further details of the metric Jacobian and normal matrices structurce
and elements are given in Appendix A. However, general properties of the
INE's are of special interest. The normal matrix is sparse and contains
nine diagonals, A through 1. each element of which is a block 2 x 2 matrix.
One eguation within the INE system is given in Equation 4.10 and clearly
shows the structure of the system.

) Ajadzjia + Bialzie + Coalzan~
{(4.10) DiadAzypr+ Ejrlzioae + Fjaldzjogaart
Gitdzjop-r+ Hiadzje -+ HadeNjo 041 = —Fuja

The INE forcing function, Fy, shown in Equation 4.11, is a product of the
wetric Jacchian and the standard desiga cquation.

k {411} Frxni= ‘4:;(9;;(44#!?:!!::23: ‘émxl}ms:

The number of diagonals in the normal matrix is independent of the
solution varinble extrapolation order uscd in cither coordinate direction.
This is in contrast. to the flux Jacobian matrix where the extrapolation
order determines the number of diagonals. The handwidrh of the normal
matrix is approximately one half of the flux Jacohians handwidth which
roquires less storage and inversion costs. Also, i the normal matrnix s
symmetric the cost of storage and solution are further reduced.

5. Geometry and Grid Constraints. Unlike direct analysiz solu-
tions of the Suid dynamic equations, physical constraints for acrodynamic
design solutions must be included {27, 28,. Thes~ constraints are hoth ge-
ometric and aerodynamic in nature, and each must be satisfied within a
design algorithm. Geometric constraints refer to the restriction of shape
modification to cortain conditions or Bmits. Fxamples are the fixed length
of » diffuser, the maximum diameter of an inler, and closed leading and
trailing edges for a blade or an airfoil.

Optimization design methods maxisnize or minimize serodynamic guan-
tities such as lift and drag. Aercdynamic constraints for these methods
would then define bounds for a design region. However, inverse design
methods attempt Lo satisly target funciions. These methods reguire some
miesns of determining whether the target function. together with geometric
constraints und BU's, are physically possible. I a target function is not
physically possible, then acrodynamic constraints alter the initial target
such that a valid solution of the flow equations is possible. The resulting
geometry then satisfies the adjusted design targets.

Since the present rescarch is focused on shape modification, and nat
inverse design, these acrodynamic constraints are not inchuded at this time.
However, the new shape modification merhod presents unique grometrie
constraint requirements which current design methods are not required to
consider.
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Geometric constraints within current design methods are applied lo-
cally at the body, which occupies only a small portion of the discretized
boundary. Governing cquation consistency is the major advantage of the
proposed new method and is inherently global in nature. A global shape
modification method requires consideration of globhal geometric constraints,
including the interior of the grid and all free or solid surface boundaries.

These new global geometric constraints, like current local geometric
and acrodynamic constraints. are problem dependent and based on physical
considerations of the body and domzin. Examples are the outer boundary
of an airfuil grid, the inlet and exit planes of an impeller, and the centerline
of a combustion chamber. These surfazes should be held fixed in their
original positions siuce they are typically not considered design variables.

Therefore, bath current local and new global, or grid, geometric con-
straints must be addressed within the quasi-analytical shape modification
method. These combined geometrie/grid constraints are expressed as addi-
tional equations, and shonld he saticfied simultaneously with the standard
design equation. In practice, these additional equations are of the form
AX & = 0, since the initial geomerry /grid naturally satisfv the constraints.

However, the geometry/srid constraint equations cannot eimply be
added to the design system of equations, Equation 4.5. All equations.
including the constraints. are only satisfied within the INE's in a least-
squared sense.  Alternately, if these equations are added to the design
system, and proper adjustments made to the metri- Jacobian and sofution
forcing function, they would be exactly satisfird. However, both of these
options require dynamic storage definitions in the hasic code structure that
wonld be problem and coustraint dependent. This would greatly increase
the complexity of the code and is nut recommended ar this time.

A third alternative, which maintains simple coding and gencral storage
requirements, includes adjusting the systern to reflect the constraint, and
then to replace one equation within the standard design system for each
constraint {29]. This method is applicd to the standard design equation.
Equation 4.5, and exartly satisfics the constraints which appear within the
solution vector. This process does, however, violate eonsisteney to some
degree. While no attempt to quantify the additional error is presently
attempted, this method is considercd the best alternative. Details of the
implementation are given in Appendix B.

6. INE Singularity. The solution of an over-determined system of
equations with the normal equation technique is subject to singularity prob-
lems. A non-singular normal matrix for the INE's would be ensured if each
equation within the <tandard design system of equations is linearly inee-
pendeunt. Both arrndynamic and geometric singularity issves for the INF's
are discussed in this section. A simple method of guarantecing a non-
singular normal matrix is proposed aud is an istegral part of the present
shape modification method
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The unknowns in the glohal shape modification method are the physical
{z.y} coordinates of each grid point within the domain. If two grid points
within the initial, or &n intermediate, grid vccupy the same point in space,
then linear independence is violated for two equations within the system. A
singular normal matrix may then be produced if this occurred often within
the grid.

Viseous and nighly non-linear inviscid problems require some level of
grid refinement. For these conditions grid points may lie close together and

‘the normal matrix may be ncarly singnlar. However, due to the inherently
independent discretization methods employed in CFD. both of these geo.
metric singularity problemns should not occur. However. another possible
singularity problem does exist for the quasi-analytical shape modification
method which is asrodvnamic in nature, :

Consider & solution prediction with Equation 2.11 where a change in
geometries/grids, AX # 0.0, is used to predict the change in solution vari-
ables, AfJ. Specialize this case to one with localired regions of unifarm
flow. If the grid is simply shifted over this region, the proper result is
that no change in solution variables be predicted. AQ = 0.0. This re-
sult is guaranteed since the local metric Jacobiuns associated with uniform
flow are zero, This may however be detrimental for quasi-analytical shape

modification. v

' Each equation within the standard design system which is associated
with uniform flow conditions contains metric Jacohian matrix elemnents
which are 2¢ro. If the uniform flaw area is large enough then the normal
matrix. may be singular or nearly singular. The solution foreing function
would also be zero since AQ = 0.0. A number of options are available
to avoid this problem and still solve the standard design sysiem with the
INE's. ' , ‘
One alternative is to test the metric Jacobian matrix and identify those
row elements or equations which may cause the singularity. In practice this
is the evaluation of solution varinble gradients by some arbirary tolerance
level. These equations may then be teplaced with some benign identivy
statement since they do not contribute to the system of equations. This
would avoid dynamie storage adjustment and is analogons 6 the SVD'
method of filtering singular values. However, to mnintan a general and
stiniple method another alternative is recommended,

Hecall that one benefit of an incremental formulation was the fexihility
to approximate the LHS matrix to ensure stability while not affecting the
final resulte. In this case the normal matrix would be altered 10 ensure a
stable inversion. However, simply altering this matrix to begin the itera-
tions wauld be of no benefit since the original singulnrity problem would he
encountered again at convergence. Therefore, a combination of techniques
is recommended and tested for all cases within the present effort.

The first technigue is to add the identity matrix to the normal matrix
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as shown in Equation 6.1,

(6-1) [A,T.'xm!imxr.]nxn = [A:xmAmxn]n xn + l'nn)(ﬂ

This LHS approximation ensures a stable inversion. The second technique
is to restrict convergence, measured by the l; norm of the A: = A(AY)
vector, to engineering acenracy. Combined, these techniques solve the im-
poriant equations within the svstem to an acceptable level of accuracy.
At the same time these technigues provide a general, simple, and robust
solution of the INE’s.

Incomplete convergence of the INE's however does not satisfly the least-
squared solution of the normal equations and is therefore an additional er-
ror. The total error within the quasi-analytic shape modification method
includes a least-squared error, a geometry/grid constraint error, and the
incomplete convergence error. If theses arc equivalent to the second or-
der terms truncated in the original Taylor’s seiies expansion, then they
contribute no additional error to the method. At this time no attempt is
made to estimate these errors, however a general assessment of the method’s
strengths is made with results that follow.

7. Design-Like Test. 'The forcing function for the standard design
equation is the flux Jacobian matrix, R/AQ. post-multiplied by the AQ
vector. The flux Jacobian matrix is evaluated with the initial, or curreny
solution and grid, and therefore is known at all times. The vector AQ is the
finite change in solution variables from the current Lo the desired solution,
This vector is defined at all discrete points within the domain, and contains
four or five conserved variables for either 2 2~ D or 3 = D problem. Unlike
the flux Jacobian matrix. the vector AQ is only partially known for each
shape modification estimate within an iterative design algorithm.

Recall that direct-iterative inverse design methods specify a target sur-
face function as the design goal. This target function is typically only
defined aver a portion of the snrface. On the remaining portion of the
boundary, and within the interior, AQ is unknown. The target function
is also generally only one of the four or five primitive variables defined at
each discrete point in the design repion. Therefore. the known partion of
the vector AQ is very small. Cutrent BSR's are applied locally and this
limited, or partial, AQ is sufficient. However, the quasi-analytical method
is a global method. and therefore requires a full AQ vector.

The focus of the present rescarch is an initial assessment of the stan-
dard design equations and the INE’s ability to accurately predict shape
modification. A design-like test is then defined as one in which the full
AQ vector is specified. This provides a simple means of implementing the
test, focusey on the methods ability, and is the best-case scenario for evalu-
ation. The assumption implied herein is that if this new method performs
well within a design-like environment, then further development effort is
warranted. It may then be modified at a latet time to perform within a
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direct-iterative mverse design algorithia.

The design-like test. hegins by defining a baseline geometry and iden-
tifving one or more design variables. A similar geometry, with perturbed
design variables, defines the target geometry. Grids, and non-linear solu-
tions for both the baseline and target geometries are then obtained. and
the difference between the solutions defines AQ. The baseline grid and
solution, and the target solution, but not the target grid. are then used for
one shape modification estimate. The goal is to predict the target geome-
try and grid. Success of the method will be measured by the comparison
of the estimated geemetry/grid to the known target.

8. Geometry and Test Parameters. The geometry used in the
present design-fike test is the symmetrical channel shown in Figure 8.1.
The channel contains three aqual length sections, with o ramp in the mid-
die section. 'The channel inkt half height, H | is the reference length and
the total channel length is theee times this value. The ramp angle, 0, is the
design variable. Target geometrics are those with perturbed ramp angles.
while each sections length, and the inlet height remain constant. Also, 1o
test the Mach number independence of the method, subsonic, transonic.
and supersonic inlet Mach numbers test cases were used: A = (.30, 0.85,
and 2.0.

Since the tert geometry i+ symmetrical abont the channel eonterline,
only the lower portion was compulationally modeled. Ininally, grids con-
taining ramp angles of = 5.0%, 5.1°, 5.5%. and 7.4" were generated. Fach
grid contained 31 and 21 lines in the r and y-dirertion respectively, and
were evenly disrributed. The baseline grid, with ¢ = 5.0°, is shown in
Pigure 8.2, The three target grids represeni design variahle changes of
Af = 2%, 10%, and 40, '

A tangency BC was applied along the lower wall snd symmetry was
enforced along the channel centerline for all cases. For the subsonic and
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transonic test cases. the inlet BC held the stagnation enthalpy and entropy
fixed at free stream values. Also, the vertical component of velocity was
zero and the pressure was extrapolated frum the interior. The ontlet BC
for these cascs extrapolated the density and both components of velocity
from the interior, aud set the back pressure ratio P/ = 1.0. The inlet
BC for the supersonic test case set the ratios p/po. = 1.0, u/ux = 1.0,
v/tte, = 0.0, and P/P~, = 1.0. The supersonic outlet BC extrapolated all
primitive variables from the interior.

Non-linear Euler solutions were then obtained with all four grids ar
each Mach nuinber. All INE solutions used & banded matrix direct solver
{30} and completed 500 iterations of the INE's which cunverged the I norm
of the Az vector by at least three orders of magnitude. The goal for thesw
tests is to predict the ¢ = 3.1°, 5.5°, and 7.0° geometries and grids using
the INE’s. :

9. Results. Results for two sets of design-like test cases are presented
within this section. The first set is for an unconstrained shape modification
test whare the gremetry/grid constraints are not included. These tests
were enmpleted for all ninc targrt geometry and inlet Mach number cases,
and are shown for comparisan purposes only. The more important, and
physically meaningful, set of nine: constrained shape modification estimates
are also presented.

The first unconstrained test case is the target ramp angle of 6 = 5.1% at
the subsonic inlet Mach number of 0.20. The predicted geometry and grid
are shown in Figure 9.1, The results are excellent in a global. qualitative
sense, with the predicted grid being similar to the bascline grid. However.
more revealing results are predictions of local geometry changes, AX. from
which the actual predicted geometry is easily inferred.

Figure 9.2 illustrates the local variation of geotuetry. Ay. used in this
report to assess the suceess of each shape modification. All subsequent
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geometry shape changes will compare the known target function of Ay 1o
the predicled function. Both the target and the predicted shape changes
are normalized by the known change in height along the channel exit plate,
Ayppp, which varies for cach target geometry. The local predictions for the
A =030 and # = 5.1° test case are presented in Figure 4.3

The: predicted Ay changes in channel inlet, ramp. and exit plates are
straight lines that are everywhere parallel to the target geometry but are
shifted slightly downward. The Ay changes for the channel centerline ex-
hibited these: same characteristics with a smaller vertieal shift, but are not
shown. Alsn, minor horizontal translations. Az. for both the renterline and
lower wall were noted in the resuits but are not shown, These translations
did not alter the total channal leugth, or effectively the end points f the
ramp, which ean be inferred from Figure 8.3,

The results in Figure 8.3 insply that the target 8 = 5.1° ramp geome
try is obtained since the predicted lines are parallel ro the targets, and the
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fengths and horizontal positions are unchanged. However, the entire do-
main has becn shifted slightly down and expanded m Leighn. This vertical
shifting and stretching. and the excellent global results in Figure 8.1, are
comnmon traits for all of the unconstrained results. Lower wall results for
all unconstrained test cases are shown in Figure 8.4, Each graph represents
a different inlet Mach number test caze, M = (.30, 0.85, snd 2 9, and each
ccntains results for all rarger geometries, # = 5.1%, 3.5%, and 7.0°. For
each inlet Marh number and target ramp angle. the desired geometry is
ohtained but again the domain is vertically shifted. ,

Collectively, the unconstrained results are very enconraging. Fach grid
puint within the domain was free to move and yet the target geometry was
obtsined with vnly minor vertical shilting and stretching of the domain.
“fhie next set of results are a constrained version of those just presented,
and therefore represent a more practical application of the INF's.

The geometry/grid constraints for the syimmetrical channel fix the
{z,y) positions of the channel inlet plane, the conterling, and the cutrance
plate. All r coordinates within the domain are also fixed at the base-
hine positions. All y coordinates within the domain, on the cxit plane, on
the ramp, and on the exit plate are free to move. These constraints f.
fectively fix the channod indet height and the total length while allowing
grometry changes of the ramp. the channel exit plate. and the exiy plane.




ADA294785

QUASEANATYTICAL SHAPE MODIFICATION 99

0,38

t‘..‘!
%b
o Target =
—Predict 6=5,1f < =
—Predict 6=5.5
—Predict 6=7.8
4.8
“n e .8 EX |

F1G. 9 5. Tarsteained Predicted Channdd G: o netries

The equations for these constrained test cases however remain massively
over-determined.

‘The predicted grids for each of the nine constrained test cases, while
not shown. were again excellent in a global sense. The lower wall results
for each of these tests are <hown in Figure 9.5, Each graph is again for &
different inlet Mach number, 8 = 0.30.0.83, and 2.0. and each contains
results for all tarpet grometries, 4 = 5.1°, 5,3°, and 7.0%.

For each inlet Mach number test case the 0 :2 5.1° and 5.5% target
geometries are oblained  These two sases. with a maximum design vari-
able change of A¢ = 10%. are considered within a normal design range.
However, even the ¢xtreme ramg angle change of Af = 40% was predicted
to within 57 of it< targst value for the transouic 1est case.  Therefore,
the quasi analytical method, with proper geometric/grid constraints and
design Yike tests does provide accurate and physically meaningful shape
medification estimates

The 2 nonm of the standard design equation with zp 5, and the {; norin
of the target grid minus the predicted grid, (Xy - Xp), are alvo measures
of wneeess for this shape modification method. However, any discussion of
these vector notms. of any other error term evaluation. using design-like
tests recults woeuld be nusleading. The most relevant evaluation of this
method must be mads within a tene design environment in which only a
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smali portion of the AQ veetor is known. Therefore, a through assessment
of error terms and equation norms is not included within the present report.

10. Summary. A new method for shape modification was proposed
for future inclusion within a direct iterative aerodynamic inverse design
algorithm. The method is based on a truncated quasi-analytical Taylor's
series expansion of the global governing equations. The method is general
and provides consistent governing equation shape modification for either
the Euler or ¥ — 8 equations, any combination of CFD techniques, and
any number of spatial dimensions.

An iterative solution algorithm, the Incremental Normal Equations
{INF}, was developed to provide a Jeast squared solution for the inherently
globat and over-determined consistent shape modification problem. Global
geometry /grid constraints were also included to provide practiral shape
modification estimates. An upwind. eollcentered, finite-volume formula-
tion of the Euler equations in 2 — I7 was used within the present effort for
both the initial dirrct solutions and the shape modification estimates,

The method was evaluated with a symimetric channel which contained
a mid-channel ramp. The bascline geometry defined the design variable
ramp angle at ¢ = 5°. A total of nine tests cases were defined which
included combinations of three rarget ramp angle perturbations Af = 2%,
10, and 40'7. and three inlet Mach numbers M = 0.30. 0.85, and 2.06.
The globai finite change in solution variables from the baseline to the target
solutions was provided for testing within & de-ignu-like environment.

The quasi-analytical shape modification method was demonstrated ta
accurately predict target geometries for both an unconstrained and con-
strained set of design-like tests. This includes the transonic test with an
extreme 40% change in the design variable. The constrained version of
the method provides more physically memurgful results since geometry
changes were effectively restricied (o the oh-anel geometry. Al test case
results were obtained with a single design #»iimaate and clearly reflects the
power of consistent shape modification. ‘Ta2se results also demonstrate
that the method is Mach number indepentent.




ADA294785

" QUASI-ANALYTTCAL SHAPE MODIFICATION 101
Acknowledgement

The first author is supported by the Graduate Student Rescarchers
Progeam through the NASA Lewis Research Center (LeRC). Dr. Francis
3. Montegani. Program Director. The suthors would like to thank Drs.
Lonnie Reid, Louis A. Povinelli, and D.R. Reddy of the Internal Fluid
Mechanics Division of the NASA LeRC for their support in this effort.
Also, a special thanks to Drs. A.C. Taylor and P.L. Andrew for their
assistance in both the rescarch and review of this manuscript.

REFERENCES

{1} Slocff, J.W.. Computational Mcthods for Subsonic and Transonic Aerodynamic
Decign. AGARD-R-712, May 1983, pp. 3.1-10.

{2] Dulikravich. G.S., Aerodynamic Shape Design, AGARD-R-780, May 1990, pp.
1.1-10. :

[3] Volpe, G.. Transenic Shack Free Wing Design. AGARD-R 780, May 1940, pp.
3.1-16.

‘4, ‘lranen. T.L., A Rapid Computer Aided Transonic Airfoil Design AMethaod, AIAA
Paper 7T4-0301, 1974,

{5) Shankar, V., A Fult Potential Inverse Procedure for Wing Design Based on a
Density Linearization Scheme, NASA CR-165991. Outober 1982,

[6] Vulpe. G. and Melnik. R.F., Method for Desiguing Closed Airfails for Arbitrary
Supercritical Speed Distributions. Journal of Airvraft, Vol. 23, No. 16, 1984,

p. 775 -T2

{7} Gally, T.A. and Carlson, L.A., Inviscid Transonic Wing Design Using Inverse Meth-
odx in Curvilinear Coordinates, AIAA Faper 87-2551. 1987

{8, Baner.F., Garabedian, P.. und Korn, D., Supercritical Wing Sections 111, Springes-
Verlag. New York, 1977,

[¢9. Sobieczky.H., Yu. N.J., Fung. K.Y., and Serhaes, A R., New Method for Designing
Shock-Free Transonic Cunfigurations, AIAA Jonrnal. Vol. 17, No. 7, July 1979,
pp. 722 T29.

[t0] Davis, W.H., Technique for Developing Design Tools from the Analysis Mcthods
of Cunputational Aeradynamics, ATAA Journal, Vol. 18, No. 6, 1980, pp.
1080-1087.

{11} Campbell, K.L. and Smith, L.A., A Hybrid Algorithun for liansonic Airfoil and
Wing Design, A1AA Paper 87 2552, 1987,

[12) Lee. J. and Mason, W.H., Development of an Etheient Inveres Method for Super-
sonic and Hy personic Body Design, ATAA Paper 91012958, 1991,

(18] Meauze, G., An Iuverse Time Marching Mathod for the Definition of Cascade
Geometry, ASML Journal of Engineering for Power, Vol. 104, July 1982, pp.
630 656,

[14) Schmide, E, and Berger, P., Inverse Design of Supzecritical Nozeles and Lassades,
International Journal For Numerical Methods in Engincering. Vol. 22, 1986,
pp. 417-432,

{15] Giles. M.B. and Drula, M., Two Dimensional Traneonic Aerodyramic Desien
Method, AIAA Journal, Vol. 25, No. B, 1987, pp. 1199-1206.

[16] Dedoussin, V., Chaviarcpoulos, I’., and Papailion, K.D.. Rotational Compressible
Inverse Design Method for Two-Dimensional. Intcrasl Flow Contigurations.
AJAA Journal, Vol. 131, Nn. 3, 1983, pp. 551 558,

{17) Tayler. A.C., Karivi, V.M. and Hou, G.W., Scusitivity Analysis Applied to the
Enler Equations: A Feasibility Study with Emphasis on Variation of Geometyie
Shape. AIAA Paper 910173, 1991,




ADA294785

162 4.5. BROCK AND WF NG

{18 Taylor. A.C,, Hou, G.W,, and Korivi. V.M., An Efficient Method for Estimating
Neighboring Steady-State Numerical Solutions ta the Euler Equations, AIAA
Paper 91-1680, 1991,

{19] Taylor, A.C., Hou, G. W, and Korivi. V.M., A Methodology for Determining Aero-
dynamic Sensitivity Derivatives with Respect to Variation of Geometric Shape.
ATAA Paper91-1101. 1901,

120] Bavaal. O. and Eleshaky, M.F.. Aerodynamic Dexign Optimization Using Sensi-
tivity Analvsis and Computational Fluid Dynamics, AIAA Paper 91-0471,
b2 N

21] Taylor, A.C. Korivi, V.M. and Hou. G.W.. Approximate Analvsis and Sensitivity
Analvais Methods for Viscons Flow Involving Variation of Geometric Shape,
ATAA Paper 81-1548, 1951,

{22, Kerivi, V.M., Taylor. AC. Hou, G.W., Newman, P.A.. and Jones. HE.. Sen-
sitivity Derivatives for a 3D Supersonic Euler Code Using the Incremontal
Iterative Strategy. AlAA 11th Computational Fluid Dynamics Conferenee,
Orlande, Flurida, July 1993,

{23} Thomas, J.L. and Walters. R.W., Upwind Relaxation Algorithies for the Neviers
Stokes Fquations, AIAA Journal. Vol. 25, No. 4, 1987, pp. 827 534

[24] Van Leer, B, Flux-Vector Spiitting for the Kuler Equativas, ICASE Report 82-30,
September 1682

23] Korivi. VAL, Taylor, ... Newman, PA. Hou, G.W,, and Jones, HE |, Au luere-
mental Strategy for Caleulating Consistent Discrete CFD Sensitivity Deriva
tives, NASA TVI104207, Febroary 10492,

- {268] Golub, G.H. and Van Loan, CF., Matrix Computations, 2nd ed., Johns Hopking
Undversity Pross, Bultimore, 1989, pp. 193- 250,

[27] Volpe, G. and Malnik. R.E., The Hole of Constraints in the Inverse Design Problem
for Transonic Airfoile. ATAA Faper R1-1271, 1981

28] Volpe, .. Geomatnc and Surface Pressure Hestrictionsin Airfoif Design, AGARD.
R-T80, May 1900, pp. 4.1-14.

{39, Reddy, LN.. An Introductionto the Finite Element Alethad, st od. MrGraw Hill
New Yourk, 1984, pp. 173 174

[3¢] Riggins, DW. und Walters. RW., The Usze of Direct Solvers for Compressible
Flow Computativns. AIAA Faper 8%8-0229, 1955,

*



ADAZ294785

QUASI-ANALYTICAL SHAPE MCUIFICATION 103
n
J.ked
*
4

(x3OY)) (x: cy’ )

*
J-1,ke 3.k oj+1,k
(x,.¥,) (x,,¥,)

y
®
X J.k-2

F16. AL ()t Conpitations: Cdl

A. Appendix. The purpose of this appendix is to complete the pre-
sentation of the inetric Jacobian and normal matrices, and their associated
system of equations. The sparse and systematic structure of each Jacobian
matrix is a function of the domain discretization used in the present re-
search. An illustration of the typical (j, k)th computational cell is shown in
Figure A 1. The (£, y) grid points surrounding each domain cell and bound-
ary cell-face are labeled one through four, but are only for local desizuation
purposes.

Each equation within the standard design system of equations, Lqua-
tion 4.2, is a function of four local metrie Jacobians. V1 — WA, four local
physical coordinate vecrors, X — X, and one solution forcing function
vector, Fy. One eguation within the standard design system is given in
Equation A.1.

W AN e+ W2 e AX 504

( A g
(A1) ”'3,*A.\’3.:_§ + WA = =Tk

The local metric Jacobian matrices, physical coordinate veetors, and
solution forcing function vectore are of size 4X2. 2X'1, and 4X1 respec
tively. Details of the local metric Jacobian matrices, and the evaluation
of these for Van Lecr’s flux vector splitting methed, are given in reference

[17].
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Fic. A2 Standard Deagn Fouctions

The struetire of the global metric Jacohian matrix and the standard
design seystem of equations ate presented in Figure A2 'The size of the
global metric Jacobian meatrix is mxn. ‘The monber of equatinns within the
systens, m = (JIHAM 4 1K DA+ 1)1}, isequal to the number of domain
cell-center governing and boundary cell-face BC equationse. The number of
columns of the metric Jacobian matrix. n = [JDIM MK DIA}2). is equal
to the number of {z. y} unknowns within the domain. The system in Figure
A 2 is shown such that KDIM controls the structure of the metric Jacobian
matrix. ’

The metric Jacobian matrix has IDIM column sections, each of length
{KDIAM{2). There are also JDIM4 1 row sections in the matrix, cach of
length (KDIM4+1}4). For simplicity, Figure A.2 is drawn for IDIM=3.
Also recall. the number of equations defined throughout the domain is
sixteen less than m. However. these extra equations are included in Figure
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Fic. A.3. Jacremental No-mal Eqiaticns

A.2 to maintain a systematic structire.

The over-determined standard design system of equations is sofved
with the INE's, Equation 4.7, which requires the normal macrix, A7 A.
One equation within this system was given in Equation 4.10. The sparse
diagonal structure of the norial matrix. and the INE ay<tem of equalions
are shown in Figure A3, Again, the example in this figere js for JDIM=3
and KDIV contrale the normal matrix structure.  The meleenle which
tepresents cach equation within the system and the grid correspondence of
the normal matrix diagenals are shown in Figure A 4.

‘The normal aateix is square and has JDIM row and column sections.
each of length (KDIM)(2}). ‘The balf bundwidth of the normal matrix is
(KDIM)(2) and is approximately one half the size of the squate flux Ja-
vobian matrix. Lach element of the normal matrices nine diagonals is a
linear combinations of lucal meteic Jacobian multiplications and are given
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in Equation A2,

Ajr = WILW L + W3, W s
Bo=0W1, Whis + f-“'?f‘ﬁ??‘; -
WaT Wi+ W4T L W4,
Cia =Wl W21+ Wi e Whaien
A2) Dje=waf 1y, .
(A. Epa=WIT Wiy, + W2, W3,
Fia=WI11, W3 p
Ga=W3l Wi
Hiv= W4T, Wl ey = W3 W20
=W, el an

Recall that the normal matrix coeflicients are defined at cell-vorners
and the metric Jacobians are defined at cell centers and boundary eoll
faces. Two acts of indices are then used; one set for the cefl-centers, and
another set for the cell-corners. A graphical representation of Equation
A.2, and the dual set of coll center and cell-corner indices. are proserted in
Figure A 5. ‘

The normal matrix is symmetric if both metric Jacobian marrices ueed
in its evaluation are identical. The symmetrical correspondence between
the lower the upper diagonal terms is evident in Equation A.2. Symmertry
of the main diagonal B. and the lower diagonal symmetry correspondentce
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F16. A.5. INE Norewzi Matiiz Dicyorals

to upper diagonals are emphasized in Equation A.3.

B"t - B”t

Acp =CFy
(A.3) Fie=Gj_y ia

Ej.k = HT__.-“*

Djr = l;i-l [

Also, the INE normal foreing function, Fy, is defined in Equation A 4.
and a graphical representation is shown in Figure A 6.

(A1) Frys ='?t;l}ii+!F¢; k41 +}&;23‘k Foi»

WSty + WAL O F haa

B. Appoendix. The purpose of this appendix is to present the details
of implem-ntation for the geometry/grid constraints which are necessary
for physically meaningful quasi-analytical shape modification. The method
uscd in the present research includes adjusting the standard design system
of equations, Equaticn 4.5 , to account for each constraint. This is followed
by replacing one equation within the system with each constraint. This is"
a simple method which guarantecs that the constraint is exactly satisfied
and naturally appeats within the solution vector.

In the present code the metric Jacobian matrix is stored such that
JDIM controls the structure. This is the opposite storage sequence of that
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tepresented in Figure A2, Lut results in a <imilar matrix structure. {In
practice only the local melrie Jacobian veclors, W1 — W4, are stored, but
for this discussion consider the entire metric Jacobian matrix as stored)

Each of the (JDIMHKDIM) column pairs within the metric Jacobian
matrix are associated with an r and y variable in that order. Each of
the (IDIMLIHKDIM+1} row sections of the standard design system of
equations are sssaciated with a sct of four cell-center governing or cell-
fuce BC equations. These equations are gencrally ordered in a continuity,
£-momentwm, srmomentum, and cnergy equation sequence. The metrie
Jacobian matrix and solution forcing function are represented by Axn
and Fy o,x; respectively. Each clement within the matrix and the forcing
function are denoted by J; ; and F, ;. wherc i = Lmand j = L.

Each geometry/grid constraint is expressed as Awr,, .. = ¢ where Ax
is & generic variable for either the change in 7 or . Yhe [itth eobuna of
the matrix, and so the (jith r or ¥ coordinate, delernnnes the value of both
me and ne. To adjust the standard design system of equations for each
constraint the following sequence of operations is perforiued.

(R.1) f;;—*Fgf"Ag'm*{. iz lblm
Arne—0 : i=lm

The {me)th equation is alio sefected (o remove the system. and is replaced
by the constraint equation. Thix involves the following sequence of opera-
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tions for each constraint.

Am.j =0 ; j=1ln

(8.2) Ame.ne — 1 and Fq me - €

This method of implementation adjusts all equations within the sys-
tem for each geometric constraint. However, only the first n, of the total
m, cquations are considered for replacement. Given the present storage se-
quence of the metric Jacobian matrix, this method effectively concentrates
the constraint enforcement to the lower half of the domain. An equation
in the lower grid section may be replaced by a constraint which was writ-
ten for an upper section grid point. This is considered inappropriate for a
gencral design algorithm. but is used here only for the initial assessment of
the quasi-analytical shape modification method.
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CONTROL OF STEADY INCOMPRESSIBLE 2D CHANNEL
FLOW

JOHN BURKARDT® AxD JANET PETER3ON?

Abstrart. We consider steady incompressible flows in a 2D chaune] with How
quantities measured along some fixed, transverse sanpling line. From a set of allowable
flaws it is desired to produce a 8ow that matches a given set of measurements as closely
as possible.  Allowsble flows are completely specified by o set of control parameters
which determine the shape of the inflew at the boundury and the shaps of an internal
bump which partially obstructs the Bow, Difficultics concerning the transformation of
this problem into a stendaid optinization problem are discussed, including the rorrect
chaice of functional and algorithm. and the existence of loca! minima.

1. Introduction, If a log fails into a siream, it disrupts the flow,
creating a pattern of ripples and whirls. If the log lies hidden under a
bridge, a wise ohserver sianding on the bridge and staring downsiream
could nonetheless dotect the change in the flow. and make a guess as to
the size and pasition of the obstacle. But as the flow rushes on, it rapidly
destroys this information. and just a few yards downstream there will be
no discornible record of the intrusion into the flow.

In acronoutical design. a similar problemn vccurs. Instead of a stream,
a wind tunnel is used, through which a steady flow of air is driven. H is
not a log, but a mockup of an aireraft wing. or fuselage, or forebody, which
is deliberately inserted intn the flow. Instead of an observer on a bridge, a
string of measuring devices are used to record the velocity and pressure of
the flow at a fixed position downstream fromn the obstacle.

For a given orientation and position of the objeet within the wind tun-
nel, and for a given pattern of inflowing air, the measured values of velocity
and pressure can he regarded as the “signature” of the obstacle. Generally,
if two objects differ in shape, ther signatures will differ. However, it is
possible for one shape to “forge™ ur approximate the signature of another.
This fact can be very useful for some kinds of wind tunnpel tests. Certain
parts of a plane come “after” other parts; that is, they are further down-
stream in the airflow. Thus the flow field that strikes the downstream part
has already been changed by #= interactions with the upstream part and so
althongh it’s possible to test a propeller. say, by itself in 2 wind tunnel, 1o
test a tail assembly requires a mockup of the entire forebody of the airplane
as well.

* Department of Mathematics, Interdinciplinary Contar for Applisd Mathematics,
Virginia Palytechnic Inctitute and State Unjversity. Blackshurg, Virginia, 24061, Sup
ported by the Air Forre Office of Scientific Research under grant AFOSH vt l-0081,

t Department of Mathematics, Interdisciplinary Conter for Applied Mathematics,
¥irginia Polytechnic Institute and State University. Blackeburg, Virginia. 24081, Sup.
ported by the Office of Naval Rescurd under grant N0OGO14-91-J-1493,
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Sometimes a full model cannot be tested because it is too large for the
wind tunnel. But it may be possible to find a simnaller shape which will fit
in the wind tunnel ahead of the object to be tested and which will have
the same “signature” -as the true forebody. Such a forebody “simulator”
should have the property that the velocity and pressure of the air flow,
aleng some transverse downstrearn plane. will closely match the values
associated with the truc forehody. A complete description of the forebody
simulator problem is availahle in Huddleston 1} and in Borggaard, Burns,
CHff and Gunzburger [2).

The problem described above is the motivation for the preliminary
study given here. This is an ongoing project whose goal is the development

{ algorithus to select, from an allowable family, a set of flow parameters,
and a shape which can he inserted into that How. which will most closely
inatch a given set of downstream measurements, In Section 2 we give the
equations which model steady, viscous, incompressible flow in a channel.
We choose to use finite elements to discretize these equations, so in Section 3
we discuss the choice of approximating spaces and give the sel of nonlinear
cquations which must be solved. In Section 4 we discuss the optimization
problem using flow sensitivities. The next threc sections describe problems
in which we allow onc or more parameters to vary in order to obtain a flow
which matches a given velocity profile. The first problem is simple channel
flow with no obstacle in the flow field; here we allow the inflow to vary in
order tv match a given flow. For the second problem we allow an obstacle
to be placed in the flow field but we require that it be modeled by a single
parameter. In this case the inflow is fixed and the shape of the bump is
allowed to vary. For the third problern we combire the first two and also
allow the bump and inflow to be described by more than one parameter.
We conclude the report by discussing future work in Section 8.

2, Mathematical model . The cquations governing steady. viscous,
incompressible flows are the Navier-Srokes equations whizh can be written
in terms of the velocity u = (u, v) and the pressure p as

(2.1) ~vAu+u-gradu+gradp = f inQ
(2.2) divu = 0 inQ

plus appropriate boundary conditions. Here v is the constant inverse
Revnolds number, f the given forcing function and € the domain in R?
modeling the wind tunnel. We make the assumption that the peoblem can
be restricted to two dimensions; that is, we assume that the behavier of
the wind tunnel. the flow ficld, and the shape are all constant aleng the z-
direction. For the case of simple channel flow “ith no obstacle, Q is formed
by two paralls] horizontal walls. The boundary conditions chosen deseribe
a flow entering the region from the left and passing out of the region at the
right. Al the inflow we set u = g(y), ¥ = D; at the top and bottom of the
channe] we set both compenents of the velocity to zero; and at the outflow
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8
we set the usual conditions v = 0 and _;3 =0.
The weak formulation Equations (2.1)-(2.2) which we consider follows
[3]. We seek u € H'() and p € LE(Q) such that

2 / gradu : gradw d + f w-gradu - wdQ - / pdivw dQ)
n 0 a
{2.3) = f fw di}
1

(2.4) / édivud=0.
1]

and suck that » - ¢ = 0 on the top and boutom walls, 4 = ¢{p), ¢ =
g at the inflow, and ¥ = 0 at the ouwtflow, Here }{Q2) represents the
space of veetor-valued functions each of whose components is in H*{Q2).
the standaid Soboley space of real-valued functions with square integrable
derivatives of order up 1o eme. L0} is defined by oll functions in LY}
with zero mean over £, Again see [3] for details.

8. Finite cloement approximations. In order to approximale the
fiow we roust choose a particular diseretization. Qur choice here is 10 use
the finite eloment mecthod. although clearly other diseretization methods
could he employed. Using the standard techniques of finite elements we
diseretize our flow region inta a finite number of subregions ealled elements,
inside each of which we will assume that the flow has a simiple structure.
For our probhlems. we chonac triangles t¢ ~reate this mesh. For our first
problem, which has no internal ebstacle, the flow region is rectangular and
so it is a simple matter to divide the region up into rectangles, each of
which can be split to form two triangles. However, for the problem with an
internal obstacle, the flow region is thought of as being a mild distertion
of & rectangle and so we are foreed to use elements with curvilinear sides.
This will require the use of iseparametric elements.

Having represented the region by a mesh of finite clements, we now
approximate the continuously varying physical quantities » and p by fune-
tions which can be determined from a finite set of data associated with
cach finite element. Typically these funciions will be represented over the
entire region by continuous, piccewise pelynomials. An examination of
the error estimates for the velocity and pressure indicate that one should
usually choose one degree higher polynomial for the velocity than for the
pressure. For our computations, the velocities are represented by quadratis
polynomials and the pressure by linear polyvnomials. ‘The finite data which
reprezents the velocity, for instance. is then siinply the value of the velocity
at six particular nedes in the element, which are the vertices of the triangle
and the midpoints of its sides. Shuilarly. the pressure is specified by s
value al just the three vertices,

We now define a problem which will yicld approximate sobutions of the
weak formulation given in Equations (2.3) (2.4). Let V' be the space of
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vector-valued functions whose components are continuous piccewise quadratic
polynomials over the triangles, let 5* be the space of piecewise lincar poly-
nomials over the triangles. and let S¥ denote the functions in $* which
are constrained to have zero mean. Then we seek a u* € V' and p" € S;?
satisfying

u/ gradu’ : grad w® d? + /u“ -grad u® . wh dQ
3 n

- / Prdive® dQ = / ful d vt eyt
[$] fl .

It

f 3" divu® dO 0 VYoheSh.

[23

The essential boanundary conditions arc enforced in the usual manner. In
particular, a¢ the inflow, #* = ¢*(y), where ¢*(y) is the piecewise quadratic
mterpolant of ¢ly). _

Using standard techniques from the theory of finite elements, we can
write these equations as a vet of algebraic equations. Fach pair of unknown
velocities is uniguely associated with a velocity node at which we have
two scalar equations. Similarly. each unknown pressure corresponds to a
pressure node and a pressure equation. Thus, we should be able to solve
the system and compute the values of the flow quantities at each node.

The finite element equations are nonlinear, and so they must be solved
via an iterative method. The iterative method we employ is Newton's
method See [4] for the formulation and convergence results for the Navier-
Stokes equations.

4. The optimization problem. Our goal in this study is to speeify
the values of some of the flow quantities along a line in the region Q and
then to deduce from that a flow over the whole region, whose values of
v and p match {or come as close as possible to) the original given values
along some sampling line. We will assume that we have some family of
possible fiows from which to select. In fact, we will assume that there are
one or more parameters which churacterize this family, so that specifving
the value of the parameters completely specifies a flow. In such a case, we
may regard the flow quantities as funclions of the parameters. We will use
the letters A and o for typical parameters.

In order to sulve the matching problem, we must first specify a math-
ematical measure of how well an arbitrary low matehes the given data. It
would be desirable 1o produce a “score”, that is, a single number which
represents the closeness of the fit. and which is immized for a perfect fit.
On~ possible clinice of a functional to minimize is the integral of the square
of the differences between the data and the computed hoiizemta) velocity
variahles; j.e.,

(1) ftwp= [ (e, )= vt dy.
Ay
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where S denotes the sampling line, #, denotes the z-cnordinate of the
sampling line. and u,{y} represents the sampled velocity data we are at-
tenmipting to match. Other choices of functionsls to be minimized will be
discussed in Section 7.

Onee we have chosen a particular functional, we can formulate & min.
smization problem, which is to find a flow {u, p) which minimizes the given
functional. If we have a single free parameter A, we can phrase this problem
as follows: :

Given a functional f{u,p), where u. p are functions of a
parameter A, find the value of X that minimizes f.

Clearly there are many different approaches to solving this one.
ditnensional minimization problem. Rather than secking to minimize the
functional flu, p) tself, we choose to seek a zero of the derivative of the
funetional with respect to A, It was not considered feasible 1o compute the
derivative of the functional with respect to the paramneter directls. since
the effect of the paramieter on the funclicual is expressed only indirectly,
through the flow field. Inctead, equations for the flow sensitivefres are used
to approximate the required derivative.

Suppose we can represent a flow field that satisfies a set of flow equa-
tions involving a single parameter A as

Glu,v.p.A) = 0.
Then the correspending flow gonsitivities

{sft: dv dap,
drtdr dx’
are defined by the linear equations

0Gdu UG dv 0 dy | _§G

Budr  Jvdh dpddT  9x
 the original nonlincar flow equations have just been solved. the cor-
responding fow sensitivitics are inexpensive to compute: this is because
Kewton's method, which is used to solve the nonlinear systom, uses an
teration matrix which converges to the rensitivity matrix as the iurates
converge to the correct solution. Thus. if the iteration has been deemed
to converge, the enrront, factored iteration matrix may then be used 1o
immediately solve for the sensitivities at very Jow computational cost.

Now we ran reframe the problem of finding s minimum of the aptaniza.
tion functional flu,p} = f{A) in terms of finding a rero of the derivative
of fwith respect to ) given by
a 8fdu 8fdr  Bf dp

P s Su..

TRV Sl e
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Once we have 2 method of computing df/dA we can pose the problem of
finding a zerv of this derivative, and hope that such a zero corresponds to
a minimum of the original optimization function. that is, a best match to
the flow data.

There are numerous choices for finding the zcros of a function. Since
calculating the derivative of the function df /dA requires ealculating the
second derivative of f, the scalar secant method is an obvious choice when
we have only one paramcter since it uses only function evaluations. Of
course, such a method is not guaranteed to find a2 minimum; a zero value
of the derivative is just as likely to represent a maximum or inflection
point. This problem can be forestalled by beginning the optimization with
starting points close enough to the correcr solution so that convergence to
a minimum was very likely. Thus the usefulness of this approach is limited
to testing one’s code and somne very simple problems. When we report on
the solution of multiparameter problems in Section 7, we discuss the choice
of a suitable optimization package.

5. Simple channel flow. Qur first example is the sitnple case of
channel flow with no obstacles in the flow field. These computations were
made to test the underlying flow solver and to begin to get some experience
with the optimization techniques necessary (o solve a general prohlem.

‘The channel is modeled by two parallel horizontnl walls ceparated by
3 units sud estending from 0 < r < 10 units. The boundary conditions
chosen for this problem deseribe a simple. parallel flow entering the region
from the left and passing ont of the region at the right. The inflow profile
is required to be parabolic, but the actual strength of the inflow is allowed
to vary, according to the valie of a parameter A, In particular, we set

u(0.¥) = Ay(3 - v).

As usual, the pressure must bie required to satisfy an additional condition
such as having zero mean or fixing 1ts valur at some point,

To sirnulate the experinental proress of making measurements and
then trying to produce a flow configuration that matched them, a “target”
value of A was thosen. ‘Lhe flow was determined for this value and the
flow profile at the sampling liue was recorded. It was this “experimental
data” that we attempted to match. Because the targer flow was actually
grenerated by a particular value of A, we knew thar the minimum value of
the functional was zero. This made it easy to determine when the search
shonld halt or when the search was not converging.

A simple test case was set up where the correct solution was A -: 1.0
and the code was started with the uwo nearby estimates A} = 06.1. A, . 05,
The secant method was uged to find the zero of df /d) where f given by
Equation (4.1). For the family of solutions controlled by A, the functional
was netunlly a quadratic function of ). Hence its derivative was Jinear.
and the secant method converged 1o the solution m ans ¢tep. The channel
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flow results were only useful in that they gave us confidence that the flow
field was being solved correctly and that the sensitivities were correctly
being used to evaluate the derivative function. In the next problem we
allow an obstacle to lie in the flow field. but still require the obstacle to be
characterized by just one parameter.

6. Flow over a bump using one parameter. For the second prob-
fem. we use a single parameter as a means of sclecting a geometric shape
which lies in the flow ficld as an obstacle. The inflow docs not vary for this
problem, but eather has a fixed strength and paraholic shape.

A “hump” is placed at a fixed location on the buttom of the channel
which is again modeled by two parallel walls of length 6 < » < 10 units
separated by 3 units. The bump is required to be paraholic in shape and
extend horizontally from 1 < & € 3, but the height of the bump is allowed
to vary, being characterized by a paranieter &,

The houndary ronditions are similar to those {or the channel flow, with
two exceptions. First, since the inflow does not vary, the inflow equations
simplify to ,

u(0,y) = ¥(3 - y).

Secondly, because the herght of the lower boundary between 1 € ¢ <3

now varies. the boundary conditions for that portion of the lower wall are
rewritten as

ulr, yfr.a)) = 0

v{r, gz, a)} 1]
¥z, a) afr =143 -12).

forigr<d

| X x) :
/] > <

\ + ) AN
4% LAZ0A4
'V N4 VA

FIGURE 1: A 1ypical region with a bump showing elements.

Beeause of the curvature of the bump, the computational mesh of the
region must also Le curved. ar least in the vicinity of the bump. Instead of
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triangular elements with straight sides, iseparametric elements were used
80 that the curved edges of the bump could be modeled. A typical trian-
gulation of the channel with a bump is shown in Figure 1.

Another complication in this problem resulted from the fact that at
each step of the optimization, a new vahie of o was produced for which the
corresponding flow had to he compnted. Because each a changed the shape
of the region. all of the mesh calculations had to be redone at the beginning
of every optimization. Thus, the geometry of the region changed at each
step, with effects that were harder to predict than those that were caused
by simply varying the inflow as in the first example of simple channel flow.

For our computations we set the Reynolds number to one and chose the
secant method to find the zero of the functional given by Eqguation (4.1).
This is analogous to the first problem described in Section 5.

The c¢hoice of the location of the profile sampling line considerably
affected the results. If the profile sampling line was set near the ontflow,
say at £, = 9, then we often encountered problems. For starting parameters
that were quite close to the target value. we were able to get convergence,
but often what seemned only slightly greater perturbations of the starting
point would cause the pragram to take many more steps, or in some cases
even to fail to converge. We concluded that the difficulty rested in the
combined problem of the location of the sampling line relative to the bump
and the low Revoolds punber of the flow. We can use the sensitivivies
to sce the problem. In Figure 2 the plot shows a bump of height 0.5 and
the velocity sensitivity field. Each vector represents the effect that a unit
increase in the height parameter would have on the local velocity. As is
obvious froni the graph, the influence is extremely strong above the bump,
but drops off dramatically within a few units downstream. This illustrates
the fact that low Reynolds nunmbers are problematic for flow optimization;
i.e., for such cases large changex in the contral parameters produce only
small changes iu the flow.
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FiGURE 2: The velocity sensitivity field for a bump solution.

For this reason, the profile line was moved to r, = 3. immediately behind
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the hump. This vastly improved the responsiveness of the functional to
changes in the bump.

7. Multiparameter How past an obstacle. This problem is a gen-
eralization, as well as a combination. of the first two problems. In this
example we arameterize both the inflow and the shape of the obstacle
and allew th number of parameters for each to be greater than one. Due
to the more omplicated nature of this problem. a major change in the
optimization method was needed, since the secant method was not suitable
for further use, o

A senrch was made for a more suitable optimization package to use
with the ende. Robustness and flexibility were key ctonsiderations. We
chose ACM TOMS algorithm 611 (5], which uses a model/trust region
appronch for choosing the step, and a BFGS procedure for updating an ap-
proximate Hessian matrix. Some of the advantages of this code included:
access 1o the souree code. goad document <tion, good portability with ma-
chine dependent quantities handled through calls to n machine dependent
function, a rererse communicafton formulation which made it casy to in-
tegrate the package into the existing program, three versions of the code
in case Hessian or gradients are not available, the fact that it will not ae-
cept an iterate if its functional value is higher than that of the current
approximate solution. and the fact that it handles an arbitrary number of
dimensions.

Another consideration was how to handle more complicated shapes.
It was assumed that this would he done by adding more parametars, but
it was not clear how those parameters should he used to determine the
shapes. In the first two problems discussed above, a single parameter con-
trolled the height of a siniple. parabolic shape. In order to mndel more
complicated shupes, we had to ¢hnose a reasonable sct of shapes and a
finite st of parameters to catalog them: we chose to use cubic splines [6]
te repreacnt the bumps. Such a representation requires the value of the
shape at a specified sequence of nodes. Then a shape is produced which is
a piecewise cubic polynomial between the podes, and which is eontinuous,
with continuous derivatives, at the nodes. In order to complete the system,
typical spline representations alsa roquire that the slope of the shape be
given at the end nodes. :

For our shapes, whether they represent an inflow, nr an ohatacle, we
set the value at the first and last nodes to zero. We did not specify the
slopes at the end nodes, but rather, used the *not-a-knot”™ option. This
permitted us {o define a shape by specifying only the valnes. The penalty
for this simplification was that the shape was required tn have rme greater
degree of continuity at the first and last interior nodes.

Once any shape could be specified uniquely by giving its valnes at
a seguence of podes, iL was natural to consider these values to be the
parameters that would be varied in the optimization. Ove sct of nodes
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would be plac:d along the inflow boundary. The value of the inflow at those
nodes could be used to specify an inflow function defined along the entire
line. A-second set of nodes would be placed on the bottom of the channel,
for 1 <z < 4, where the internal obstacle would be placed. The height of
the obstacle at each node would be enough o define the whole shape of the
obstacle. The number of nodes placed at either location was arbitrary, and
hence we could study different inflows or complicated obstacles or both.

The inflow parameters are given in a vector A and the bump parameters
in a vector a. The paramcters enter the flow problem through the houndary
canditions. In particular, the value of the inflaw velncity at any inlet point
(0. y} is given by a function of y and the inflow parameter vector:

w0, y) = inflow(y,A)
W0,y = 0

and the height of the jower channel for 1 € + < 3 is deteriuined as a
function of » and the bump parameter vector:

u(z,y(r,a)) = 0
v(r, ¥z, a)) = 0
vz, ) = height(s ).

Secondly. the vector of parameters requires that the optimization scarch
be conducted in IR rather than JR’. The sensitivities are now defined as
partral derivatives of the flow quantities with respect to the several param

. eters,

Various problems became apparent as we attempted to solve these
multiparameter problems. The first difficulty we encountered was when
the optimization code seemed to “get stuck™ on an incorrect minimizer.
The optimization code at first produced a rapid decrease in the functional
value and a correspondingly better apptroximation to the known solution.
However, after a few steps the convergence ground to a halt. ‘Lhe opti-
mization vede Look progressively sialler steps, and “converged” to a point
that was still u significant distance from the target solution. A srudy of
the data showed that the problem was rooted i a diserepancy between
the functionaf and the approximate derivative data we were supplying. We
had been computing the sensitivities of the functional with respect to the
parameters. These quantities are easily computed from the same Jincar
system used during the Newton-type iteration that produces the flow field
itsclf. They are only approximations to the derivatives of the functicnal
with respect to the parameters, and theit accuracy depends on the fineness
of the grid of the region. When the optimization code had gotten faitly
close to the correct solution, greater aceuracy in the derivatives was re-
quired than the sensitivities could deliver. In fact, at the false convergence
point, the dot product of the sensitivities with the direction vector pointing
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towards the true solution was positive, suggesting incarrectly that the fune-
tional would increase in that direction. when in fact it was monotonically
decreasing. This problem disappeared if the inesh was refined, which im-
proved the sensitivilies enough to permit convergence. On the other hand,
if we wanted to do calculations on & coarse mesh, an alternative was to
use the derivative-free version of the ACM code. in which derivatives with
respect to the paramelers are approximated internally by finite differences
and the accuracy could be improved. This increased the cost of computa-
tion on a coarse mesh greatly, but also allowed the oplimization method to
reach the correct targst solution.

A second problem that arose was in the choice of the eost functional
given in Equation {4.1). Fo analyze the difficulty, consider the following
problem which has one inflow and three bump parameters. The starting
point was given as

A= @
a = {0.0.0)

and the “target” profile was generated at

- ()

o« = (313
T OARTR/C

which corresponds to an inflow with parabolic shape and strength 3 and

a bump which “happened” to be a parabala of height 1 although it lies in
a space of more complicated shapes. The compntation procecded satisfac-
torily at first, but after four or five sieps, the solution crased to approach
the target solution. Instead, the second and fourth components of the pa-
rameter vector became negative! In fact, after abnut twenty iterations,
the optimization code returned with the message that the iteration had
“eonverged”, though the computed solution wax not our intended target
solution. The computed solution is shown in Figure 3

A graph of the shape corresponding to the converged values shows that
the resulting bump had roughly the same height as the target bump, but

ith a “gutter” before and afler it. To the eye, al least, the resulting

horizontal flow at the sampling line luoks “close” to the target values,

The cost fun:tional we used, [, seemed 1o have a local minimum which
the optimizer had found. We tested this belief by marching slong the line
between the computed solution and the target solution. ‘The corresponding
functional values are shown in Figure 4 and elearly display a “double dip”
curve.
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The question then arose as to whether this was actually a local min-
ittum or a spurions numerical solution. As other local minima solutions
were found, they all tended to share the property of being oscillatory. That
is, the shape would sither be a crest sandwiched between two valleys, or a
valley between two erests. When the mesh was refined for a particular case,
the “valleys” doubled in depth, while the crest remained roughly where it
had been. This suggested that the program was not approximating a real
focal minimum, which would have a fixed, finite shape. Rather, some
instability in the program or in the problem formulation was generating
nurnerical behavior that did not correspond to a physical solution.

One obvious modification to the problem formuiation which might al-
feviate the problem was to increace the value of the Reynolds number. The
fact that the functional seemed to be so insensitive to large changes in
geometry was prssibly duc to the very low Reynolds of the problem. In
such a setting. the viscous effects could be expected o dominate the flow,
and quickly overwhelm disturbances that the functional would be trying to
megsure.

Some tests of the program seemed indirectly to bear our this state.
mrent. In one test we controlled the inflow with three purameters and the
rarget profile was gronerated by specifying a parabolic inflow. The program
produced as a solution an inflow with & “double hamp”, having a deep
drop in the middle. Nonetheloss, this contorwed inflow assumed essentially
s parabolic shape within two mesh units. In another problem we xet up
a simple channel flow with no bump. There were 11 cqually spaced nodes
along the l[t hand boundary at which an inflow velocity was specified with
only the first node having a nonzero velocity. Nonetheless, as dernonstrated
in Figures § and 6. the flow very quickly took on a parabolic profile.
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FIGURE 3¢ Velocity vectors for the single inflew nade test,
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<

FIGURE 6: Streamlines for the single inflow node test.

Thercfore, it would be natural to expeet that only at higher Reynolds
number (faster inflow or lower viscosity), wonld the program be able to
distinguish between the convex target bump, and the oscillatory solution
that Lad been found. Calculations using higher Reynolds numbers can be
done with our code by incorporating a continnation n.ethod. We plan to
do this in futurc work. Another modification to the problem formulation
is a change in the cost function f; given by Equation (4.1). One possible
change was to include the discrepancies in the vertical velocity and pressuce
along the sampling line as well. This gave the functional

fa(u,vp) = (I:(“("s-y) = u, (1)) + (v(zy,9) = vs{y)) + (plz,. y)

[}

Py

We nsed this cost functional fo for the same problemn that the funcrional
J: had displayed a local minimum. The new functional also produced a
local minimum, differing from the previons one only in that the bump did
not actually have “gutters”, but rather “low shoulders”.

Another choice of the cost functional was one that included the cost
of the control. An obvious choice was to cstimate the cost of the hump
control by approximating the L? norm of the height of the bumip about the
channel botiom: .

a ]
nla) = (/’ (hciahf(z.a))"'dr)

However, this still allowed oscillatory svlutions. We only began to get
smoother solutions when we took the L2 norin of the slope cf the height:

3 ]
gax) = (./1 (height,(x.a))’d;c) .
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‘T he smoothing was o effective that we immediately added the correspond-
ing cost {unction for the inflow control:

] t
ha(A) = ( / (inflow, (y. A}}?a’y) .
o
Combining thete, we have the cost function

Costla A} = B{a. A} + g:la) + h2{A}.

‘Fhis produeed smooth solutions. but not correct oncs. The effect of the
two added rost integrals depends partly on their scale relative to the first
integral. ¥ g2 and Ay are relatively small, then the optimization code will
work for most of the time op minimizing f5. and only towards the end of
the optimization will the control costs perturh the solution slightly. But
since a flow with a flat bump and a zero inflow will minimize the control
integrals, it's clear that a mistake in scale would causc the optimizer to
spend most of its offort smoothing a poor solution. ;

To avoid this problem, we modified the cost functional to include
weights and then allowed these weights to be changed at any time dur-
ing the run. H the weights were modified, however. the optimizer had to
be restarted. since the functional was changed. The new cost function had
the form

Cust(re, A) = wn fol@, A) + waga({a) + waha(X) .

With these modifications. a typical run of the code would involve sev-
eral steps. A first run of the code would start from a zero solution, and
find a minimizer of the cost function with weights {1, 0.001. 4.001). The
solution would be used as the starting point for # second cptimization of
the cost function with weights (1, 0.00001, 4.00001). Finally, this solution
would be used as a starting point for an optlimization of the cost function
with weights {1, 0, 0}). Thus, the control costs kept the shapes from wig-
gling too much while a “crude” solution was being sought. After » few such
procedures. with decreasing weight, the “crude” solution was clor- enough
to the true solution that mimmization of the original functions! would pro-
duce the true solution. Using the control costs allowed the prag-wm to
avoid the endesirabie local minima that had trapped the original program,

8. Future work. Th= original problem that motivated this tuvecti-
gation sought to find a flow obstacle from a given test set which had a
downstream profile similar to one generated by a particular shape which
was nof a member of the test set. We have not handled such cares yet,
although they reguire no change to the pragram. The optimizer do. > not
require that the functional 1o be minimized achieve a valur of zera.

The spurions solutions that were encountered with the mulline Lue.er
problem corresponded to a bump that had a very sharply .2 ng pro-
file. Berause the simple gridding routine that was used determines the
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grid of the region by the shape of the boundary, sharp variations in the
bump caused distortions of the grid. These distortions, if severe enough.
could cause the calculations to become unrelizble. Thus, a better grid-
ding method is desirable, whose accuracy will be less dependent on the
smoothness of the boundary.

We chose Lo represent the space of allowahle shapes by cubic splines.
We impeszd no convexiiy or positivity requirements on the shapes gen-
ersted by the splines. We found that the programn often generated unac-
ceptable shapes, sometimes only as trial solutions for an iteration, but on
occasion as the final solutions of the cverall optimization. It is possible that
we could avoid this problemn by choosing a more restrictive set of allowable
shapes.

Finally, we note that we need to be able to handle higher Reynolds
number flows. This is s» for several reasons. The wind wunnel flow we
are ultimately interested in has a very high Reynolds number. Also. our
method of trying to march a downstream profile is hampered when the
viscosity effects dampen out the perturbations caused by the obstacle.

9. Acknowledgements, The authors would like to thank the IMA
for providing a forum for the discussion of flow control issucs and they
would like to thank Max Gunzburger for many helpful suggestions.
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OPTIMALITY CONDITIONS FOR SOME CONTROL
PROBLEMS OF TURBULENT ¥FLOWS®

EDUARDO CASAS!

Abstract. In this article. we are concerned with the control of the turbulence of
viscous, incompressible ows. The control are the body forces or the heat Sux threugh
t!  woundary of the domain occupied by the fluid. ‘Lhe state is the velority of the
fuid and the turbulence is measured by some integral involving the vorticity within the
How. We consider steady and time-dependent three-dimensional Bows described by the
Navier-Stokes equations. sometimes coupled with the heat equation. We prove existence
of optimal controls and derive some first order optimality conditions.

Key words. optimal control probleme, Navier-Stokes squations, Boussinsen squs.
tions, optimality condirions

AMS(MOS) subject clescifications. 43300, $5K20, 35000, 23035, 76068

1. Introduction. We consider the probiem of controlling the turbu-
fence behaviour of viscous, incompressible three-dimensional flows, The
control variables are the body forces or the heat flux through the boundary
of the domain occupied by the fluid. The state is the velocity of the fluid
and the cost functional involves the norm of the vorticity of the fluid. This
norm gives 3 good measure of the turbulence within the flow, The relation
bhetween the control and the state. that is, the state equation, is described
by the Navier-Stokes equations. coupled with the heat equation when the
control is the heat fiux. The first paper dealing with this problem was
published by Abergel and Temam '2]. They considercd two-dimensional
flows deseribed by evolution equations, the threedimensional casc heing
more diffienlt hecanse of the lack of an existence and unigneness thearem
of solution for the evolution Navier-Stokes equations. Other papers dealing
with the optimal control of these equations are: Casas [4], Fatiarini and
Sritharan {7]. [6], [&:, Sritharan [19], [20]. In {7}, [6] and [20] existence of an
optimal control was investigafed. In {7} and [19], a Pontryagin maximum
principle was proved by using the semigroup theory to deal with the state
equations. In [4]. exitence of an optimal control and optimality conditions
of first order were studicd, by using variational methods in the study of the
state equations.

When steady fHlows are considered. the nonuniqueness of solution of
the state equations occurs in dimensions two and three. To simplify the
exposition, we will enly consider three-dimensional flows in this paper. but
the tesults and methods are readily extended fo the two dimensional case.

* The research of this author was partially supportsd by Direccién General de Inves.
tigacién Cientifics ¥ Téenics [Madrid).

t Dpto. de Matemidrica Aplicada v Ciencias de Is Computacisn, F.T.5.1. de Caminesx.
Universided de Cuntabria, 39071 Santander. Spain. E-mail: casasccucvx.undcan.es.
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Two different approaches have been considered to derive the optimality
conditions in this case. The first one, followed by Gunzburger et al. [11],
[12], uses an abstract theorem for optimality due to Ioffe and Tikhomirov
[13]. The second one, due to Abergel and Casas (1], consists in introducing
8 family of approximate control problems, obtained by linearization of the
state eguation with the help of an additional contro! and setting a penalty
term in the cost functional; these approximate problems are well possed and
it is easy to derive the optimality conditions for them; finally. it is passed
to the limit in these optimality systems. This Jast approach provides a
nunterical method to deal with these ill-possed state equations and selve
the conirol problems.

The plan of this paper is as follows. In §2 and §3, we study the sta-
tionary case corresponding to the distributed control of the Navier-Stokes
equation and the boundary control of the system coupled with the heat
equation, respectively. In these sections we describe the method used in 1]
to derive the optimality conditions. In §4 and §5 the corresponding time-
dependent cases are considered. To derive the conditions for optimalitv
in the evolution case, we must make a suitable formulation of the control
problem. different of that one of [2]. This lormulation requires every feasi-
ble state of the control problem to be a strong solution of the Navier-Stokes
equations. Here we follow the idea developed in Casas [1).

Let us give some notation. which we will follow in this paper. First, we
assunte that the fluid occupies a physical domain  C B3, which is bounded
and has a Lipschitz boundary [. In ©Q we consider the usual Sobolev spaces
W () and 18y T(Q); see, for instance, Adams [3] or Negas [17]. When
p = 2 we write H™(Q) and HP () instead of W™2(§) and W 1(0),
respectively. We also put

(1) Y={fe H'(@®:divi=0} and Y; =Y A H}OS,

where div denotes the divergence aperator. It is easy to check that Y
and Yy are separanle Hilberl spaces when they are endowed with the inner
products

(5.5 = (F Dpemy + al§. 5)
and
(7, 5y, = a(yg. 2),
respectively, where
3

(1.2) a(j, 5= Z / Vy(2)Vz(2)ydr ¥F. £ HI{OY.
S

Now. given T' > 0. we denote Qpr = @ x (0, T) and p = I' x (0, T).
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Following Lions and Magenes {18, Vol. 1] we write

21 _ 2 &y 8y _ .
H>(Qr) = {yef.{ﬁ} Bm: Brie; B € L3(Q7). z<;3<3}
and

2
Hullwsungy = { fﬂr (%sfig-f{-g )d‘.:eff

+Ej drdt + Lf 3:3 -

=l i,i=1

oyl
Br;

o2
a’.r{ft } .

In (16, Vol. 1] it is proved that every element of H21(Qr), after a modifica-
tion over a zero measure set. is a continuous function from [0, T} —» H1(G),

50 we can consider H2.1{Q7) C C{[0. T}, H}{Q)). moreaver the inclusion is
continuous,

2. Steady flow: distributed control. Let us consider a stationary
viscous incompressible flow in 1) the equations of mation are

VAT (T -C)§+Vp= f+4 Cuin Q.

@1 divg=0in 2. §= gronT,

where v > ﬂ _f S H MO Ce LI HHOY), uc U, U being 2 Hilhert
space. and ép € HV*T1®. We assume that

2.2) 3IF € BN such that ¢ = (V¥ x D,
where
{2'3} Vx f= {a‘rk Ya— 3}‘3\2-3r3¥i - 8:; i &:; Xz~ &r;k‘t}-

Under this hypothesis, it is chvious thet the venal compatibility condition
holds: ’

(24) /;. dr(e) - it(r)da(r) =0,

fi{z) denoting the outward unit normal vector 1o T at the point r: see Nefas
{17}, Assumptionson ér allowing to prove the existence of { satisfying (2.9)
are given in Lions {15] and Temam {21}

Iu (2.1}, 7 denotes the valocity, p the pressure, £ the body forces and
u is the contral that can act over all domain . or only over a part of
or even only in a given direction of the space. All these possibilitios ean
be teeated by choosing a suitable space IF and the corresponding linear
mapping €.
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It is well known that (2.1) has at least one solution (i, p) € H3(52)3 x
L2(R); see, for example, [15] or [21]. However there is not general unique-
ness results. Moreover, we have the following estimate for the solutions of
2.1):

ProposITION 2.1. Let 7€ HY{(Q)® satrsfy (2.1) for some p € L*().
Then there exist constanis M, >0, i = 1,2, mdependenl ofuel andyg
such that

23)  l§llmay € M (1l + Clllulle ) = 3.

Moreovcr Ma = 0 whencrer ér = 0.
Proof. Let d(r,T) denote the distance from z to l‘ Then there exists
a function of class €2 in R? snch that

%¢ =} in some neighbourhood of T,

(26) % = 0f p(r) 2 2(c). §(¢) = exp (~1/0),

0, 3:(2)] < P—(‘r—) if p(r) € 26(c), 1< j < n.

Thus, given p2 > 0 arbltrary, we can take ¢ > 0 small enough and e'g =
¥ x (%.X). note (2.2), in such a way that &|r = p and

(2.7) / [0:0-,2500: Mz < pllFiig el '"H!(n Vi ey
ij=1
see [15] or {21].
Let us take € > 0 such that {2.7) holds with g = v/2 and lei us set
F=§ -4, €Yo Then muluplying (2.1) by £ we obtain

(2.8) va(F4 6. DB+ G T4 G D= (f=Cu D).
where
3. .
29 bt o2 73y = / 0,2 Adr.
su=170
Recalling that

and

b(Z. 3¢, 5) = =b(5, F. &)




ADA294785

CONTROL PROBLEMS OF TURBULENT FLOWS 13!
we deduce from {2.8) that
i, < s (ill-scans + 1€l ) Bty + 1805, 5.0+ 168, €0 5

Finally, due to the inclusion H*(Q) ¢ L¥(Q). we ohtain from (2.7). the
ahove inequality and the well known relation

B, 22,2 < L enpe I N llZ®) o0
that
VliFE, <G G*ﬁffi”{s‘i}’ + ?fﬁﬁiﬂft*) Iz n.+glfﬂifﬁcﬂféif%rm:"ﬁﬁin ,
which, together with the ineguality
o < D0mens + [dluscans < Callv, 4 16 hmias.

feads o (2.5). 0
Now we define the functional J : HYQP x I — Rby

o N
Hu, 5 = 1 / IV x §l°de + = "ulip,
2.in 2

with N > # and ¥ » 7 denoting the vorticity of the fow. defined asin (2.3},
The physically relevant term i J is of course

E/}Vxﬂzdr,
2J)a

which provides an estimate of the level of turbulence within the flow: the
other term is put there for technical reasons and it is not necessary if the
set of admissihle controls is bounded.

Given 8 nonemapty convex closed suhset K of [7. we formulate the
optimal contre] problem as follows:

P1) Minimize J{u, §)
(v.5) C K x H'(Q)? satisfying [2.1) for some p & L3(0).

The first question to study is the existence of a solution for {P1).

Treorrm 2.1, Assumed that N > 0 or K 15 bounded in U, then (P1)
has af least one sofution.

Jo prove this result. it is enough to consider, as usual, 2 minimizing
sequence, which is hounded in I’ x H3 (", due to the assumptions of the
theorem, and to take into account the convexity and ¢ontinuity of J; see
[1} for the details.

Our next goal is to derive the optimality conditions for Problem (P1},
which is made in the following theorem.
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THEOREM 2.2. If (vo,7:) € U x H'(Q)" is a solution of (P1), then
there ezist a number a > 0 and some elements Go € H'(D)? and py, 7o €
L3(Q) verifying

(2.10) a + [[Zollmny > 0
2.11) ~uAGy = (§o- VYo + Vpo = [+ Cuy m Q,
' dvi=0mQ go=0onl;
(2.12) =850 = (o- ¥)8a + (V)T Fo + Vay = oV x (V x o} in Q,

dividi=0iQ, S=0onT;
(2.13) (C*F-+aNugu—1u); 20 Yu€ k.

Let us remark that sometimes it is possible to get (2.11)-(2.13) with
a = 1. Indeed. following Guuzburger et al. [12) we say that the control set
K has property C at (uy. 7,) if for any nonzero solution (7, 7) € H1{12)® x
L*(9) of the system

—VAF~ (o - V)F+ (Vi) §+ Vr=0in Q,

(2.14) divg=0mmQ, g=0onl,

we can find u € K such that
(2.15) (C*F u—1p) < 0.

Convention will have it that property (7 is to hold vacuously if there are
no nonzero solutions of (2.14).

Corortany 2.1. If K has property C nt (ug. ), then there ertst
o € H(Q) and py. 7y € L*(Q) versfying (2.11) (2.13) wath o = 1.

Proof. 1t is enough to remark that (2.14) and {2.15) implies that « #£ 0
in (2.11)-(2.13). Then we can replace & by J: /o and so deduce the desired
result. G

Remark 1. Tt is obvious that if U = K = L¥(Q)® and € = inclusion
operator from L%(Q)? into H='{Q)?, then K has property C at (v:, ).

Tor a detailed demonstration of this theorem, the reader is referred to
Abergel and Casas {1]. In the §2.1 and §2.2 we sketch the proof.

2.1. The problems (P1,). The main difficutty to prove Theorem 2.2
is the multivalued character of the relation hetween the control and the
state. To prove this theorem, we intradnee a family of problems (P1,), with
well-possed state equations, whose solutions converge toward the solution
{us,Fo), then we derive the optimality conditions for these problems and
finally we pass to the limit in these conditions.
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For every ¢ > 0 we define the functional J,: U x Y — R by

Jlu ) = Jiu Jlu &*)}-{-—E/ Ny {n, ) - Vuw; Pdx

i=1
i
NS [t - witas + gl wlf,
}-1
where gly, :z} is the unique element of H1{Q)® that satisfies. together with
some p € L¥(§2). the system

WAFH(E-C)F+Tp=f+CuinQ,

(2.16) divi=0in Q. F=gdronl,

To check that this system has a unique solution, it is enough to consider
its varistional formularion

Find 7 € ¥ such that
valg. )+ b, g, 5) = {(f + Cu, 5} ¥T€Y,,

and to apply the Lax-Milgram theorent, noting that the H{{Q2)%-coercivity
of the bilinear form is an immediate consequence of the following orthogo-
nality property of &.

Wi, 5 5)=0 YEEY and I EHG{Q}

Note {2.9) for the definition of 6.
Now we formulate the problems (P1,) in the following way

(P1.) Minimize J{u €}
Yl {ud)e K xYand&=gronl.
‘The next proposition states that the problems {P1,) eonstitute an ap-
proximating family of (P1).
ProPosITION 2.2, For every € > 0 there exists af least one set‘&fma

{u,. .} of (P1,). Moreover of we denole by §. the solution of {2.18) corre-
spondmg to (v, @). then we have

# M M i > v T apt 2
217)  limlle, - wolly = ff-{%§;j;= I¥y; — Vg ldr=0.

{2.18) @, — o and G- G weaklyinY,

(2.19) Ef_.m‘. Jelue. @) = J{vg, 5}
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Taking into account that System (2.16) has a unique solution §
HY(Q)? for every pair of controls (v, &) € U x Y, the relation (u. ) —
being C?, and

€
g

KX{ti?EY:u"’lr:r;y}

is convex, it is enough some computations to prove the following result

PROPOSITION 2.3. Lt us suppose that (u 17, ) 1s a solution of (P1,).
then there exisl elements §,. ¢ € HNQ)® and p,, = € L2(Q) such thai the
Jollowtng system holds

~vlfe + (W - Ve + Ve = F+Cu, inQ,

2. A
(220) divi,=0inQ, fi=ér on I}

~vA3, ~ (& V)3, + (Vi)' & + ¥,
(2.21) =V x (VX )+ G — 0 m
divg, =0m8Q £ =0o0nT:

(2.22) CF +Nug+u =ug,u—uy 20 Yueh.

Remark 2. The method deseribed in this section provides an efficient
numetical scheme to solve Problem {P1); obwviously, the funetional J, should
be modified by removing the last two terms. Then Proposition 2.2 may fail
to be true, but. under the assumptions of ‘Theoremn 2.1, it is still possible to
prove that {u,}.»c is a bounded sequence in U and every weak limit poinr,
when ¢ — 0, is a solution of (I'1). In fact these subsequences converge
strongly in [/ if N > 0. Furthermore §, — #i weakly in H'(2)® and
inf (P1) — inf (P1).

2.2. Sketch of proof of Theorem 2.3. We are going to pass to the
limit in the system (2.20) (2.22) with the help of Propoesition 2.2. In this
process the essential point is the houndedness of {Z, }esn in Z*(Q)3. First,
let us assume that {3} 54 is bounded in 12(Q)3. Muliiplying (2.21) by
&, und using the orthogonality property of b, defined in {2.9), we get

(2.23) 15l a0 € CrllE Loy + CaliZdlmny
From the incquality (Temam [21, page 296])

(2.24) (X TR RVol EA AP EA T A
and (2.23). we obtain

- = 03/2 -
"‘r’lugl'(n]‘ < C3“$°c”y/l(m: + Cz"%“mqmn




ADA294785

COKTROL PROBLEMS OF TURBULENT FLOWS i35

which proves the boundedness of {Z,}e»a in H}(2)3. Then we can extract
a athcsqneﬁte denoted in the same way, and an element @, € H'(Q)*
such that &, — & weakly in H*(Q)%. Now it is easy 1o pass {o the limit
in (2.20)-(2.22) and to deduce (2.11)-(2.13) witha = 1.
If {$.}c>0 is not bounded in L(R)* we take
1

Gy = mmr——— —{} whene—x
liFdlLagays
and again we dencte a3, by F.. Now repeating the previous argument, we
derive (2.10)-(2.13) with a = 0, It remains to prove {2.10) or equivalently
that 3 # 0. Fromn the wenk convergence 3, — J; in H1(Q)® and Rellich’s
theorem, follows the strong convergence of {5}, >0 to ¢ in L2(£2)®, which
proves that

Fellzaay = lim 1@l ey = 1.

3. Steady fiow: boundary control. Now we consider the applica-
hility of the method introduced in the previous section to a morc realistic
problem. In this seclion, the state equations are the equations of thermo-
hydraulics in the Brm«mesq appmx:mdttm;

-pAF+{F-C)g+Vp= f—»%;nﬂ
-xDr+ §- Tr—gal';ﬂ
divi=0m, §=dronT,
r=honly Gnr=uon'l-,

3.1}

where v,x > 0, f 2 H-YQ)P. F € L=(M3. or € HY*(IP. g € L¥5(Q),
AE HYUT), ue LA, T=1eUN, TonTy - @and o(ly). 0Ty ) > 0.
We still assumr that {2.2] holdsand moreover

(3.2) or(z) -f(z)=0 ar. z€T,.

flere §. p and f are the same things as in {(2.1). 7 is the temperature
inside the fuid and u is the heat flux through the boundary. Let us remark
that the hypothesis ¢ € L5/3(Q) is made to give n sense to the Neamann
boundary condition of (3.1). Thapks to this assnmption the term J. 7 is well
defined and the usual variational formulation of this probleni is equivalem
10 {3.1); see, for instance, Casas and Fernandez {5].

The control problem is formulated in the following way

(P2) Minimize J{u, §).
(u,5) € K x HY(Q)® and satisfies (3.1) for some {p. 7).

with J : YO x LY} — R defined by

x5
Hu,9) = -é/ﬂf?xﬁ?d:-t- E,{y luitde,
H
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N >0and K ¢ L¥(T'y) nonempty, convex and closed. In this problem the
role of the control is to cool suitably the fluid froin a part of the boundary
in order to minimize the turbulence inside the flow. The reader is referred
to (2] for an application of Problem (P2) to the case of a fluid in a driven
cavity.

To prove the existence of a solution of (3.1), it is usual to make some
assumption on the size of the viscosity v and the diffusion coefficient x;
see, for example, Gaultier and Lezaun [10°. However we show in the next
theorem that it js not uecessary. Let us note that, in general, there is no
uniqueness of solution (see Rahinowitz [18]), therefore we are again dealing
with a multistate equation.

THEOREM 3.1. U‘nder the above condilions, System (3.1) has at least
one solution (§,p,7) € HYN)® x L*(Q) x H (). Furthermore there erist
constanis Ma, My > 0 such that

(33)  MNrllavay + iAllaa
< My (U0lm-renys + Ugllzermiy + IB oosgrey = cullisiryy) + Ma,
where My depends on :;’Tr. being zero when this function 1¢ ero.

The proof of this theorem uses the following lemma: -
LEMMA 3.1, Lel us assume that & € ITYH{)3. with divé = 0 and

¢-A=0o0nTy, and Be L(Y,Y). with
Ve ., -
(3.4 i(B(2)- 2 < 1l YFE Y

Then there exists al least one solution (Z.p.7) € H () x L(Q) x H'()
of the system

~vAFH(E-V)F+ B(D+Vp: f+3rinQ,
—xAr+(z‘+5)er=y in Q,

divi=0mQ, F=0onT.

r=honly Gur=uonl.

(3.5)

Furthermore, there exisls Ms > 0 such that
(3.6) Helereiny + 1 msiap
< M Ulifia-say +llollorsion + bl oscr,: + ||"||u-:r.)) :

Proof. Let us take
X={Beli :divE=0 and #-i=0onT,}.

Let us note that v:.7iis defined in a trace sense on I, with € 77 € W -1749(1)
and

/ @ Cydr == (F-.v) Ve € WHQ);
1]
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see Casas und Ferndndez {5]. Space X, endowed with the norm of L3{$1)%,
is a Banach space.

Now we define 2 mapping F : X — X, with F{&) = ¥ being the
solution, together with some r 2 J7*(Q) and p € L¥(9), of the system

~vAT+(E-V)F+ B(H)+Vp= Ff+drinq.
-edr+{F+4})-Vr=gin
divi=0inQ, S=0onT,

r=honly Ohr=vonl.

(3.7

Indecd, this svstem is uncoupled. then we can solve first the problemin r,
which is inmediate from Lax-Milgram theorem, and then obtain 7. The
existence and uniqueness of ¥ can be proved in the same way than for
Stokes problem, it is enough to note that

{3.8) valf. 5+ & 5N+ {BIND
ra{Z )+ {B(5)2)

« F -F
2 WA, - SIE, = S,

Let us estimate [|T y,. To do this, we first take ¢ € H'{2) such that
v =hon Iy and 8¢ =0 on Ty, for example ¢ can be the solution of

-A¢ =0 intl.
¢v=h onlg
g =0 onfl,.

Let now g, € D{R?)} verifving

v f 1 Hdla )< /2
”“f“'}‘{v ifdiz.I)> e

Given 4 > 0 arbitrary, redefining ¢ 88 oo and taken ¢ smali enough. we
¢an suppose that

(3.9) ellzain < 6.

Weset { = r =g, then we have

1

f [(7 4 0)- SCdz = {(F+ 6)- A7) - f div(ut + )(%dr
it ]

JIEOR
£

(F &) 7., - [3 [ = 3) - $¢)Cdr

- [1a+)- v,
43
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hence
/,, (& + &) T¢)dr = 0.
Analogously we can prove )
[i#+6)-wtide = - [1@+8)- Vel

Now multiplying the second equation of (3.7) by {, integrating by parts
and using the wtwo above identities follows

. f V¢ [z = / oCde + / uCdr - / TUvCdz + / (F+6)- VJvde.
n 0 r, n n

From this equality and {3.9) we obtain that

8IS iy £ (“.ol!u"m: +1tu e,y 4 sl + 58+ 8l 0{9»’5) :

Estimating ¢: in terms of it we get
(3.10)
e w o S Wl + IIKH e,
< G (ilﬂ"uqu + Al o + lellear, + H¢ilum;s) + 8Caii i

with €3 independent of 6.

On the other hand, multiplying the first equation of {3.7) by &, we
derive with (3.8) and (3.11) that
. V- £1 " ¢
CER DR i - (l!f'|h'1~=.:rz,-S +Hlgirernin; — il g,

= Muflzarn + 1, o) + SCsHF .

with C; independent of £. This incquality implis

w3

thae
Liiav

2l € Ce+6CHFain 5.

Thus choosing & in such a way that (8 < 1,2 and setting » == 2C,. we
deduce that F applies the ball B,(0) de X into itself. Finally the existence
of a fixed point of I follows from the conipactuess of the inclusion Y- ¢ X
and Schander’s theorem. Estimate {3.6) follows from (3.11) and (3.11). O

Pioof of Theorem 5.1, Let us take ¥ and 4, satisfving (2.2) and (2.6},
respectively. We take ¢ > 0 small enovgh, so that the following inequality
holds

3 1/2
- y v, - - S 2
(3.12) ( > lfn-z-of:fri:;f,_.) S sllillnyiap YO € HAQY,

B
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sce Temam [21. pzge 177]. Then we define
B(5) = (8- V)i + (5 V)d..
From (3.12) and the orthogonality properly of b we have
KB(3). 5] < 6(6e, 5, )] + IB(Z. ., D) = U7, 2.6,);

3 3
< -Z:; L [2:0:,50,dr < Z 0z, z:lleamllzidsslicacny € ;i‘ﬂﬁ?:gm}’
ij= ij=t

Now we take a solution {F, 7.2} of {3.5), changing the right hand side
of the first equation for f +dr = (e;;; ‘?}‘;1. Itisenonghtoset = 7 ¢ &e
io conciude the proof of the theorem, 4]

A different proof of Theorem 8.1 was given by Abergel and Casas {1],
where Brouwer's theorem. after a discretization of the state equations {3.1),
was used instead of Schauder’s theorem.

Once we have proved the existence of solutions of the state equations,
we can establish a theorem of existence of a solution for Prohlem (P2)
analogous to Theorem 2.1.

THEOREM 3.2. If N > 0 or K is bounded in L*(Iy). then {P2) has ot
leasl one solytion. ~

Also we have the following conditions for optimality

THEOREM 3.3, Let (1. §a) be a solutron of {P2). then there erict
constant o > U and elements 5y € HYD®, ro.vi0 € H-(Q) and .7 €
L) suck that

(3.13) o+ [[vollmin; > 0;

VA {0 Vido 4 Vo= f+ 50 m Q.
~sAn+ 5 Yrn=gmQ,
divir=0inQ Jo=or on T,
fsz=honTe Born=ue on Ty,

(3.14)

~vAF = (§o - V)é + (Vi) §: 4+ T
=V +aV x(Tx )i Q.

(3.15) ~kl¥ ~ §o - Vo = 37, in Q,
divZi =0in ), S =0onl,
ta=0onTo davn=00nTy;

{3.16) f {vetaNwlu-wide 280 Yul K.
T

The proof of this theorem follows the same steps as that of Theorem 2.2,
sce [1] for the details. Similarly to Theorem 2.2 here we could formulate a
statement analogous to that of Corollary 2.1, which would allow to conclude
(3.11)~(3.16) with o = 1 if K" had property C at (. uo).
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4. Timc-dependent flow: distributed control. This section and
the following one are devoted to the control of the turbulence in time-
dependent flows. Ilere we study the case of a distributed control and the
state equations are the Navier-Stokes equations:

gTy ~ 0B+ (G- V)i +Vep = f+ Cu in Qr,

div,§=0 in Qr, §0)=¢; inQ. =0 on T,

where v > 0is a constant. f € L2([0, T}, L3(Q)™), € € LU, L([0.T]. L¥($2)%)),
v € U, {7 being a Hilbert space. and éy € Yy is the initial velocity. We will
henceforth assume that T is of class €2, ' '

The existence of a weak solution of (4.1) is well known: see, for instance.
Ladyzhenskava [14}, Lions [15], Temam [21]. ete. However it< uniqueness
is an open question so far. We recall that an element § € L2([0.T], 1) N
C.{[0, T}, L3(2)3) is said a weak solution of (4.1} if it satisfies

(4.1)

Find 7€ L%([0,T], Yo) such that

d - - - - et

Z(j(t)~ d;)L’(ﬂ)’ - Vd(??(l), 1:'))/“ + b(![(l) y“)‘ V)
(4.2)

= (flt) + Cult), &) pagyp Vi € Ye, are. 1€(0.T).

;7(0) = 601

and the energy inequality
t
@)+ [ A
t A _
t
< Htgﬂuia(g,ﬂ + 2/ (f(S) + Culs). §ls)y '.'(n).nfls Vi e [U, fl]
’ a

With Cy ([0,7]. L*(Q)®) we denote the space of functions § : [0.1] —
L3(©)® weaklv continuous; that is, §f is continious when L?(£2)” is endowed
with the weak topology. Thus the initial conditions 7(0) = 85 makes sense.
Once a solution § of (4.2) has heen found, the existence of the pressure
p € D'{(f17) can be proved, in such a way that (7, p) is 2 solution of (4.1},
satisfving the partial differentia) equations in the distribution sense, the
boundary condition in the trace sense and the initial condition weakly in
L2(Q)3. The: pressure is unique up to the addition of a real distribution in
(0.7).

Therefore, if we formulate an optimal control problem letting the weak
solutions of (4.1) to be feasible states, we find the same type of difficulty
than in problems (P1) and (P2) to derive the optimzlity conditions: the




ADA294785

CONTROL PROBLEMS OF TURBULEXNT FLOWS 41

relation control — state is not well defined. It seems natural to try the
same technique than in the previous sections to derive these conditions for
optimality. Thus we can introduce a new control & € L3([0,77, Yp) and
consider the new system

Y 8t (VT4 Cep= i O,

div.§=0 inSr. §0)=6o inQ. §=0 on Er.

Unfortunately, we can not prove uniqueness of a weak solution for this
problem; one falls essentially on the same difficulties than in the study of
the uniqueness of (4.1}, Conscquently, the method used in the previous
problems does not work for time-dependent flows.

To overcome this difficulty motivated for the Iack of unigquencss of {4.1}.
we can consider a more restrictive class of solutions, namely, strong solu-
tions. We say that ¥ is a strong solution of (4.1} if it is a wenk solution
and 7€ L%([0, 7). L3{Q)%). Tt is well known that 74.1) docs not. have more
than one strong solution. Strong solutione satisfy the energy equality in-
stead of the inequality {4.3). So they seem to he physically more significant
than weak solutions. Unfortunately, there is no existence result of strong
solutions. However, we can formulate the optimal control problews in such
& way that the only feacible states are strong solutions. ‘Lhis mean: that
we will work with a subset of controls providing stroug solutions of {4.1}.
Morzover, the relation between the control and the state becomes differen-
tiable when the controls are taken in this set. To attain this gosl, instead
of taking the cost functional as in [2]. we put

T r
J(u.§) = :, ( _;i A gg?d:) df + ;'s{@,.

Then the optimal control problem is formulated in the following way

( Minimize J{u, 7).
) {(v.he N x 2O satisfyisg (4.1) for some p € L*{(0.T]. H}(Q)).

The fact of taking H2Y{O7rY as state space is motivated for the &k
fowing result, whose proof can be fonnd in Casas [4]:

Turonua 4.1, Lef us assume that {F,p) is a strong solutior of Sys-
tem (4.1), then § € H>HQrY¥ 0 CU0, T}, Yo) end p € LH[0.7], HHSYH).

Morcover

‘a5 < ff( %o v+ Willze g ooy '?ils?fﬁz'z’:s,fiz*fs:;’;}~
{4.9)
where 1[0, +0¢t — [0, 4] Is an increasing function deponding enly on
Q and v
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The first term of the cost functional gives a measure of the turbulence
in the flow through the norm of the vorticity in the space LE([0, 17, L*(Q)?).
The reason of the choice of this norm is that any weak solution of (4.1)
verifving J(u,§) < 4+ is a strong solution, which reduces the feasible
states of (P3) to strong solutions of (4.1). The following propasition proves
this statement.

ProrosiTIiON 4.1, Let f be a weak sofution of (1.1) rerafying J(u. ) <
+00, then § ts a strong solution. Moreover

(4.5) Hillzs;jo.1) L0y € Me.

for some constant Me, depending on J(w, ) and |jull.
Proof. Let us brgin noting that there exists a constant €'} > 0 such
that

(4.6) By, € CiVe % Tlrany VFE Yo

see, for instance, Temam [21, Lemma 1.6; page 4€5). Then the inequality
J{(u,§) < +oo implies that § € L™([0, T, Yo). On the other hand. since §
is @ weak solution, we have that § € 1°°([0.T]. L*(2)?). Thercfore. from
{2.23) we obtain that

S 41 1/2 e on 113/ 4 - 34
itz < \/leyﬂl,m;[o 1]'1_2;;333)".1/\“Iiy/3 = Caff ‘\tm)'n ’
whizli iniplies that
Mesierzumy € CHITIL e 1y, <+
~ Finally. (4.5} follows from this inequality and (4.6). 1]

To prove the existence of' a solution for (P3). in #ddition to the standard
hypothesis assymed in theoremis 2.1 and 3.2, we inust suppose the existence
of a feasible pair (u, 7) for (P3). To check the cxistence of these pairs,
we can take an element § € H31{(04)3 NN 1Yo, with g0} = 5;,
and obtain u from the partial differential equations. If u is an element
of K. then the assumption is satisfied. For instance, this is the case if
A= 17 = L2([0, 1, L2()%) and C is the identity. The precise result is
formulated as follows

THEOREM 4.2. Let us assume that the following two hypotheses hald:

1. There erests a feasible pair (. ) € K x 11%-5(Q1)® satisfying (4.1).
2. FEither N >0 or K is bounded in U.
Then there erists at least one optimnal solution {uqg. @) of (P3).

The next step is to derive the conditions for cptimality satisfied by
these optimal salntions. The crucial point is that the st of controls of
having associated i strong solution form an open sc.; moreover the relations
between the contral and the state is differentiable on this set.

TucoreM 4.3, If System {1.1) has e strong solutron for somc eleinent
1 of U and some Gy € Yo, then lthere erists an open neighbourhood U of




ADA294785

CONTROL PROBLEMS OF TURBULENT FLOWS 143

u in I such that the Navier-Stokes eguations with body forces § = f + (v,
v € U, and inttial condition equal lo ¢ have a strong selution §,. Moreover
the mapping G : U ~— H¥YQr P nCY[0,T), Yo), defined by G(u) = §, 1s
of class C°. Finally, if £ = DG{u)} - v, for some u € 4 and some v € [,
then 7 is the unique strong solution of the problem

as . - e - )
= VAT (G Ve (T V) + Vrp=C iy,
(1 &

diveF=0 infly, f{0)=0 mQ, T=0 on Xy,

for some p € L2([0,T, H*(Q)), which is unigue up to the addiivn of a
function of 120, 7).
By using this resalt, it is not diffienlt to prove the following theorem

Turorem 4.4, Let us assume that {uz, fo} 15 a selubron of (P3) and p,

the pressure corresponding to the velocity 5. Then these cxest a unigue cle-
ment 5o £ H2Y QP C0.T),Y%) and ¢ function mp € L3([0, 47, HY{D).
wnique up o the adhition of a function of L*(0,T). such that the following
sysiem is salrsfied

0F 4 e i mam e = .

= = vl H (B VW 4 Vipe = f~(up i Qp,
(18

div. i =0 ;m Qr. Fid = 5; m =0 en Xy

850 - " - - T
“d? -8 Fa = (To Te)Fe 4 (Vrlo)  Es+ Vimy

(49 2V x oy daopl ¥ X (T2 x #)] w2,

divegdy =0 m Oy, ST =0 inQ), Fe=0 on ¥y

{4.10} TS+ Nupu=uyly 20 Yo K,

The detailed proofs of the twe previons thearems ean be found in 4,

&. Time-dependent flow: boundary control. As in the previous
seetion, we assume Ftoheof class G2 v > 0. f ¢ L[0.7}, L*(8D)®) and
do € Y, Moreover we take 3 € L®(0r), g € L2([0.T,. LY)). 0y €
L3, X3 =Py » (0.7, %5 =Ty x (0,T), with T'y and Ty as in §3, and
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u € L?(Z}). Then the state equations are

oy o - = =
gf-uA:y+(y-V,)y-’-V,p=f+ﬂr in Qr,
-{E—xA r+y§ - V.r=g in Qr.

{5.1) ot y ’ ’

div:7=0 inQr, 7#0)=4, inQ, F=0 on L7,
H0) =6y inQ, =0 on =%, 3,7 =u on Tk,

‘The physical interpretation of 7 and u is as in §3.

This system has similar properties 10 (1.1). So the existence of a
weak solution (§. 7,p). with § € G, ([0.T]. L2(M*) N L¥ 0. T].Y)). 7 €
C([0, T3, LX) N LA[0, T, H(Q)) and p € D'(Qr), satisfving an energy
inequality can be proved by using the methods of {11, [15] or [21]; see
also Foias et al. [9]. Again the uniqueness is an open question. We follow
the method of §1 to control the turbulence of the fluid deseribed by (5.1).
Therefore we consider the cost {unctional

. 1 {Trr SN N T ”
J(u'y)-‘:E/ (A Ve % 9§ dr) df+?/ A lul"dedt.
< 3 \

‘Then the optimal control problem is formalated in the following way

P1) Minimize J{u, §). ,
( (u, N € K x H2{0r)3 satisfying (5.1) together with sotae (7. p).

with (r,p) € C([0,T]. L*)) n L¥([0. T]. H}{(Q)) x L¥{{C, T}, HY()) and
K C I2(Z}) nonempty, convex and clased.

We say that (. r, p) is a strong solution of (5.1) if it is a weak solution
and morcover 7 € L3(0.T], L(52)%). 'Lhe following result is an immediate
consequence of Theorem 4.1.

1 'moREM 5.1,  Lel us assume that (§.7.p) 15 a strong solution of
System (5.1), then §& H*A(Qp PAC0, 1. Y0) end p 2 L20. T, H> ().
Morcovrr

(5.2) Hllaziaz o + Nlleage Ty mo ey + ITlie=qe,mLs0n),

< ﬂ(|l5o|iva+!lf|!!»'~:10.73.1. ram= Il ryenans+Hllulle=pr, + !§9oiiL’(tz:) -

where i : [0, +x) — [0, +2¢) 15 an increasing function depending only on
0, k and v.

Propositinn 4.1 remains true and an existence theorem snalagons to 4.2
can he etated for Problem (P4). We have also the following result about
differentinbility of mapping u — §,
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THEOREM 5.2. If System (5.1} has a strong solution for some element

u of L*(Z}) and some G0 € Yy and 8, € IA(Q), then there exists an open

nesghbourhood U of v in L}TL) such that System (5.1), with v instead of

u a5 Neumann condilion, has a strong solution . Moreover the mapping

G U — HQr PN C(0.T), Yo). defined by Glu) = i, is of class C°.

Finally, if = DG(u) - v, for some u € Y and some v € LA(TL), then Zis
the unrgue strong solution of the problem

8 - gm -y - . .
'é?'yérz'{'{yﬁ'?2):'}'{3‘?:}5&:'?‘?:5’:;3( m QT?

o
53 & FACFTTn AR V(=0 mar,

diveT=0 inQy, Ai=0 mQ, =0 on Tr.

$0)=0 mQ (=0 onS}, (=0 on X}

Jor some p € LYMD.T], HY(Y). whirh is unique up to the addition of a
Function of L2(0.T).

The proof of this theoren; follows from the implicit function theorem
and regularity H3H{0)? for strong solutions; sce Casas {4]. Finally, by
using this theorem. it is iinmediate 1o derive the following conditions for
optimality

THEOREM 5.3. Let us assume tha! {uy, ) is o solution of (P4) end
15 and py are the femperature and the pressure, respertively, corrrsponding
to the velocity o. Then there exist two untque elements Fp € H2 Y{Qr)3n
C([0.7%,Yo) and ¥ € C{[0,77. LX) N L2([0, TS, HY(SY)) and a function
mp € L20.T). HY(S2)). unique up to the addition of a function of L*(0.T),
such that the followng sysfem is satisficd

. - - - 7
_;_;g = v+ G Vello~Vepo = f4 31 m (g,
an - .

{f}"i} 3{2 —~ kDo Joo Veto= g t{p,

divefa =0 in Qg Fl0) =3¢ mQ. § =0 on S,

7(0) =0y in . . =0 oni}, Jpry=u onLh;




ADA294785

146 EDUARDO CASAS

LY . - - T =
——53 - vA.Fo = (fio - ©2)P0 + (Vi) Fo + T

=7V + ||V x !70”2'4(9)3("'? x (Ve x )] in Qr,

[ s s - e
(5.5) -% ~ kDU - Jo-Veto =35 in Qr.

div,d =0 inQp. F(T)=0 inQ, F=0 onZr.

wdT)=0 inQ, yo=0 on E'}, 8avo=0 on I';-

T
(5.6) / / (0 + Nuo)(u — ug)dadt 30 Vu € K.
|4 Iy

The detailed proofs of the theorems of this section will be given in a
forthcoming paper.
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ON CONTROLLABILITY OF CERTAIN SYSTEMS
SIMULATING A FLUID FLOW

ANDREI V. FURSIKOV® AND OLEG YU. IMANUVILOV!

Abstract. Approximate contrellability of the Stokes system is established by a con-
structive method when control is a right-hand-side concentrated in subdomaini.c. in the
case of local distributed control. Approximate uncontrollability of the Burgers equation
is shown in the cases of boundary and local distributed controls. A local theorcn of
exact controllability for the Burgera equation with boundary control is proved. With its
help it i shown that the controlled trajectory going out an arbitrary initial point can
achieve the attractor of the Burgers cquation during a finite time and after that belongs
to attractor, The sets possessing such property we call an absorbing set of reachability.
For the boundary and local distributed controls the description of absorbing points of
reachability for the Burgers equation is given.

Key words. approximate controllability, exact controllability, absorbing set of
reachability.

- AMS(MOS) subject classifications. 93B05

Introduction. This paper is devoted to the investigation of controlla-
bility of certaii distributed systems which simulate a fluid flow. In Section
1 we study the approximate controllability of the nonstationary Stokes sys-
tem defined in a domain 2. 1t is considered the case when a control is a
density of external forces concentrated in an arbitrary fixed subdomain w
of the domain Q. We call such kind of cuntrol us local distributed one.
The approximate contrcilability of the Stokes system with such control
has been proved by A.V. Fursikov and O. Yu. Imanuvilov (see [, [2]).
Here we discuss a method of construction of the controls concentrated in
w which generate the solutions of the Stokes systemn approximating a given
solenoidal vector ficld. This methed is based on application of an extremal
problem depending on parameter. The solution of this extremal problem
determines the control sought for. For analyzing of the constructed control
the boundary value problem is applied which is the optimality system of
the extremal problem. Note that this method was applied earlier by A.V.
Fursikov in |11, [4] for the investigation of analogous problems in the case
of the Cauchy problem for an elliptic operator of the second order.

The rest. of this paper is devoted to the investigation of nonlinear mod-
els. First of all the problem of approximate controllability in nonlinear case
arises. In the papers of C. Fabre. J.-P. Puel. E. Zuazua {3}, [6] approxi-
mate controllability has heen proved in the case of semilinear heat equation
with a local distributed control as well as with a local Dirichilet boundary

* Department of Mechanies and Mathematics, Moscow State University, Lenin Hills
119899, Moscow, RUSSIA.

! Department of Applied Mathematics, Moscow Forest-technical Tnatitute, 141000
Mytischi-1, Moscow Region, Russia.
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conirol. In that papers the assumption that the nonlinear term satisfies
the global Lipschitz condition is essential. The situarion changes cardinally
when this condition is broken. Below, in Section 2 (see also A.V. Fursikov,
O. Yu. Imanuvilov {2}) an estimate of solution of the Burgers cquation has
been obtained which shows that this equation is not approximately con-
trollable with respect to boundary control as wall as with respect to local
distributed control. Similar negative results have been ohtained in the case
of semilinear equations with a power nonlinearity {see A. Bamberger in {7}
J.I Diaz {8]). Note that the conjecture on approximate controllahility of
the Navier-Stokes system formulated by J.L. Lions (see {9]. [10') remains
open until now.

In this situation it i= natural 10 look for new formulations of control
fability problemn for nonlinear models. It would be possible to formulate a
problemn of iuvestigation of reachable sets i.e. such sets i the phase space
which can be achieved by the controlled trajectory going out an arbitrary
initial point when controls from a given sct are applied. But we think that

‘it is interesting to study more narrow class of sets. The point is that, usu-
ally, in applications one has tv achieve some set of controlled trajestory and
not only to achieve but to hold it ou this set or in its small neighbourhood.
A subset of the phase space will be called a2n ahsorhing set of reachability
if it ean be arhicved by the controlled trajectory going onr an arhitrary
initial poiut and this trajectory can be held on tius set during the rest of
time by means of controls from a given class.

Below, in Section 3 we study absorhing points of reachability in the
case of the simple model of the Burgers equation with zero right hand-side
snd the boundary control. The complete description of all absorbing points
of reachability is given. The analogous result has heen obtained also in the
case of local distributed control.

The situation when a dynamical system has the attractor with & coni-
plicate structure is much more difficult. Sections 4.3 are devoted o the
proof of a fundamental theoren: which can he applicd in this situation. (It
is applicd in Section 3 also}. This theorem is as follows: Let it r)beaso
jution of the Burgers equation with a fixed right-hand-side g{z). Then for
an arbitrary initial function yo{z) from a sufficiently simall neighbourhood
of §(0.-) there exists such boundary control v(f} that the solution yif, 2}
of the mixed boundary problem for the Burgers equation satisfies relation
y(T.2} = j(r). This method consists in drduction the nonlinear problem
ta the cxact controllability problem for 4 linear paraholic cquation with
variable coefficients by means of the Schouder fixed point theorem. The
exact controllability of a linear equation is proved with help of some Car.
leman estimate. Similar estimate was applied earlicr by O0.Yu.Imanuviiov
in [11,[12), and {13] for the case of semilinear paraholic equations with a
sublincar nonlinsarity. Note that besides the proof of existence of a solution
we have to choose the solution depending compactiy on coeflicients of the
linear equation. Such choice of a solution is realized with help of a certain
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extremal problem. The linear problem of exact controllability is studied in
Section 4. In Section 5 the local theoremn of exact controllability is proved.
And, besides, we give some corollaries of this theorem. In particular. it is
shown that the attractor of the dynamical system defined by the Burgers
equation with zero boundary conditions is an absorbing set of reachability
by means of boundary controls. After that we show that singular points of
the same dynamical system (and, in particular, hyperbolie singular points)
can be made stable if one would apply a boundary control. The last fact
does more clear some points of problem formulated by J.L. Lions: “Are
there connections between turbulence and controllability?”

1. A constructive proof of approximate controllability of the
Stokes system.

1.1. Preliminaries. We consider the Stokes systetn which describes
a viscous uncompressible fluid flow in a bounded domain Q C R%:

(L1)  aylt,z) - Ay(t,z) - Cq(f.r) = ult, 7}, divylt.z2)=0

where 2 = (2:,....25) € L L €0, Ty = (%1....,¥a) is a veloeity vector
-field, Tqit,2) is a pressure gradient, &y = dy/dt. u(l.z) = (uy,...,uq)
is a density of external forces which will be a coutrol in this section. It ie
ascumed that uft, z) is concentrated in a given subdomain of the domain:

(1.2) vt {0, T] suppu(l..)Ca,w
We suppose that the boundary condition

(1.3) ylon=10

and the initial condition

(1.4) yt. oMz =0

hotd.

Let I7.¥. Q, H be Banach spaces and for every u € 7 the unique solu-
tion (y,¢) € Y » Q of probiem (1.1), (1.3), (1.4) exists. We denote by 47
the operator of restriction of a function y(t. 2) at 1 = T: 57y = ¥T,-) and
suppose that the operator 47 : Y — H | is continuious. We remind

DeriNiTION 1.1, Prodlem (1.1). (1.3}, (1.4} 15 called H-approzimate
controllable with resprct to a conirol space U if for arbitrary § € H and any
£ > 0 there exists such contralu € U that for the solution (y,q) of problem
(1.1), (1.3), (1.4} the inequnlity

ry-illy <«
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Let us introduce concrete spaces to study the approximate controlla-
bility of the Stokes system. For a dJomain G Z € we set

V(G) = {u(z) € (C* (@) :suppr C G, dive =0}

(1.3) HYG) = the closure of V(G) in (La($))?
{1.6) HY(G) the closure of ¥(G) in (W] ()¢
(1L.7) H{G) = (WEQ)nHYG)

where WE(0) is the Sobolev space of functions defined on Q having
finite norm

(1.8) iy = 3 f |D°u(z)*dz

'}jsin

Herea = (ay,....04) is amultiindex. 'al = a,<...+as. D%y = §l¢u/622 . ..
1
gryt. .
We shall consider the space
U = Lo (0. T H%w)j

as a space of controls. ‘Then

Y - {ylt.-) € LolO. T H ) : ey € LoA0. T HHON).

(1.9)
Q = {qlt.z) € Ni0.7] x Q) : Vg€ (L((0.7) x M)}

where D{{0. T] % €2} is 1 e space of distributions an [0, 7' 2 Q. It is known
{J.L. Lions, E. Mager s [14]) that a7} = HY(Q) C H*{Q) and. henee. for
U,Y,Q indicated #* ove it is possible to take H'{0)i= 0.1 as a spare H.
We shall consid:r the case

H= H:‘tf’ﬂ}.

In papers by AV. Tursikov and OYu. Imanuvilov {1]. [2] the H%{Q-
approximate controilability of the Stokes svstem with respect to the control
spaee L2(0. T; H%uw:}), has been proved. Below, we will give an independent
constructive proof of the same theorems applying the theory of extremal
problems.

1.2, An extremal problem and its system of optimality, Let
G C R? be a domain. We denote by 36 the orthoprojector of the space
{L4(G)) onto HY(G) and set 7gq = 7 when G = Q. Applying the operator
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x to the both sides of (1.1) and taking into account that u € Ly(0, T; H%(w))
and y € Y, where Y is space (1.9), we obtain the equation

{1.10) Siy(t.z) — »Ay(t.z) = ult,2).

Let us consider the extremal problem

(111} Je(pw) = ’”"’TJ My + 2/.."“’)”}."&)""“‘””"

which is defined on the space of couples {y,u) € ¥ x Ly(0,T; H%(w)) sat-
isfving equation {1.10), (1.4).

ProrosiTion 1.1. For an arbitrary € > 0 there errets the unique
solution (ye,1u:) €Y x L2(0.¢: HY(W)) of prodlem (1.11). (1.10), (1.4).

This proposition can be proved by means of well known methods. (see,
for example, A.V. Fursikov [4], {15]).
" To prove the H2(Q)-approximate controllability of the Stokes system
with respect to L0, T, IT(w)) it is sufficient to show that

(1.12) Worye = gllgogy =0 ase —0

. We will prove (1.12) by means of the optimality system of problems
(1.11), (1.10), (1.4).

ProposITION 1.2. A couple (y,u) = (ye, u ) €Y x La(0,T; /%)) is
a solution of problem (1.11), (1.10}, (1.4) +f and only zf it satisfies (1.10),
(1.4) and therc crists such p€ Y that

(1.13) ~p(l.2)~7Ap = 0, plan=0
(1'14) p(Tv )= - y(Te )
(1.15) enu(t,) = #,p(t,-)

where the operaior %, is a superposition of three aperslors; the resiriction
operator |, onto w, the operator =, and the operator L, of ertending of
functions by zero outside w:

(1.16) fup= Loma (pl)

Proof. We apply the Lagrange principle for smooth problems (see V.M.
Alckseey, V.M. Tikhomirov, S.V. Fomin [16], A.V. Fursikov [4]): Let Z, W
be Banach spaces and £ be a solution of the extremal problem

(1.17) g(z) — inf, G:=

'
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where g : Z — Risa contimuonsly differentiahle strictly convex functional.
G : Z ~— W is a linear continuons operator such that Im& = W. Then
there exists such linear continuous functional w* on W that the Lagrange
function L{z,w*) = gz} + {Gz, "l satisfies the equality

(1.18) ({Li{z,w*),h)z = {g' (i) h)z + {Ch,u)w =0 VheZ

where {-,-}v is duality between a Banach space ¥V and its conjugated V°.
Besides, if € Z satisfies {1.18). {1.172) then 2 is the solution of problem
{1.17).

We take 2 = (y,u4), Gz = By - xAy - v, g{z) = J{y, u) (see {1.11}},
W= L0, T HOM)), Z = Yo x Ly{0.T; H'w)) where Yo = {y(t.-} € Y :
¥10,-} = 0}. Then the condition ImG = W follows from the theorem of
the unique sohability of the boundary value problem for the Stoker uystem
(see O.A. Ladyzhenskaya [17]. R. Temam [18]). The Lagrange function is
as follows:

Liy,u.p) = Ly, u) + (Oey — 7AY - ¥, Pir0 T 370
and {1.18} can be writlen av two equalions:

{119} (yry—-3. ’;‘ff.@};;a{g;} +{dh~ 3.{33:,p};‘:{;';f';;gv;r;}‘; =0 YheYs
7

(1.20) ¢ / (u(t). s pepndt = {2 p)ic vy =0
il

Ve € 1o(0,T: HO)).

Equalities {1.13). (1.11} and the inclusion p € Y are derived from {1.19) as
in A.V. Fursikov {1]. Equation {1.20}) together with the equality

(v P esormeoay = (0. Py rmewn Ve € La(0.T: Ho%w))

imply {1.15).
Substituting (1.15) into (1.10} and taking into account {1.4} we obtain
the equalities

(1.21) B(t.z) = 7By = 2(£.p)(12). Yhean =0

Let us solve problem (1.13), (114}, (1.21). As in ML Vishik, A¥.
Fursikov {19} we deduce from {1.13}, (1.14) that

(1.22) p(t ) = e"8T=00 - (T, ),
and from {1.21) that

*

{1.23) ylf, 3= é/e"sf-*“?};-,‘.p{:‘. dr
F
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Substituting (1.22) into (1.23) and taking ¢ = T we obtain equality

T
/‘.'AZT—i;’-'w(elA(T—v)(g - y(T)))dT

rs
v

(124)  y(T.)=

o f

Denote
T
(1.25) R:= / T =N (e7T-7) 1)dr
(]

Then it is possil.le (o rewrite (1.24) in the form
(1.26) (It RWT,)=¢""Ry

To solve {1.26) we must study R.

1.3. Properties of the operator R.

LEMMA 1.1, Operator
(1.27) R:H%D) — H(Q)
defined by (1.25) is a compact self-adjoint and nonnegative one.

Proof. ‘The self-adjoininess and negative definiteness of x A imply the
self-adjointness in H%(Q) of the operator ¢® ‘7%, Therefore. taking (1.16)
into account we obtain the equalities

T
(Rsi,2alpoy = /(“mw'”(f&f"“ﬁq)-‘:«),2'2)!1“-‘(:‘2)“’"

0

r
b = [ (71). (7)), o
[ }
T
L= o/ (z;,e’!.’\('f’-?fﬁ\, (‘:'A"T'-T}z?))ﬂn\'ﬂ(, dr = (z:, Rz2)yerr,

Inequality

i
(1.29) (Rz, 2)goy = / 17 e T2 0 dr > 0
' 0
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can be proved as in (1.28). It was shown in M.L Vishik, A.V. Fursikov [19,
p- 27] that the mapping z — ¢73/T-7)2 acts continuously from H(Q) into
La(0, T; H*(0)). therefore the operator z = #,{e"3(7=*)2) is continuous
from HO(Q) into La(D, T; H%(2)) and, hence, again by means of M_I. Vishik.
AV, Fursikov [10, p. 27] operator {1.23) acts continuously from H(Q) into
HYR). Since the embedding H(Q) € I7%(0) is compact then operator
{1.27) is compact also. T
The following property of operator #2 will be essential in a future,

LemMa 1.2, The equality KerR = { holds.

Proof. ! Suppose that for a certain zo € HT{Q) the equality Rza = 0
holds. By (1.29) we have:

T
{}.33} ff{‘zu,:{;}gnfﬁ} = fgf.'&{'p{f. }{s }gr}}‘;{‘,}é‘? - i}
@
where
{1.31) pr)= P Eiaks PO

Let (7 be a bounded dom.ain with 2 boundary 86 of cluss 71, We note
that for an arhitrary vector field w € (L2(G))¥ the Weyl drcompaosition

(1.32) w= g+ Ty

holds where #gu € H*(G).» € Wi(G). Applying to the both parts of
{1.32) the operator div we obfain that ¢ is a solution of the Neumanu

problem

{1.33} Az =divw, 8¢/0nlpe = (v, n)ss

where n is the vector field of external normals to #(;. Let @ be the operator

which transforms a right-hand-side divw and a boundary value {w, ullsg

to the solution  of problem (1.33) which satisfies the condition [ ¢dr = 0:
&

(1.34) Qudivw, (w.n)lag) =

Relations (1.32), {1.34} invalve the formula defining 7y

{133} mow = w — G{divee, fw, n}ag)

‘The function p{t, ) is a solution of the followiag Stokes problem with the
inverse time:

{1.36) -3p{f, 2} - wAplt,2Y =0, plan=90. plar= .

¥ Actually, lemma has been proved inr AY. Fursikey and O, Y Imannvitov Pa-
pers [1], [2] We give the proof here only for the completeness of an aceount.
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In virtue of the theorem of the smoothness of solutions of this problem
(see O.A. Ladyzheuskaya [17)) we have that p(t.z) € C~{(0,T) x Q)N
La(0, T: H*(2)). By (1.30) the equality

P = Vg, g€ W)

holds for an arhitrary t € (0.T). It follows from this relation and {1.35)
that

(1.37) 2t ). = Vdivp, (p.n)le) = TQLO0. (p, n)]a.)

because div p = 0. Substituting (1.35) with G = Q and w = Ap mnto (1 31}
we obtain that p(f. z) satisfies the equation

(1.38) = dp(t.z) = Ap+ VQ(0,(Ap,nllan) = 0

We denote w = Ap. Applying the aperator A to the both parts of (1.38)
we obtain that

(1.39) ~duit,r)-Au(t,r})=0. te{0.T),re

Appfying; the: n;ﬁrator A to the both parts of (1.37) we obtain the equality
(1.40) w(t,ry=0 t£(0.T), z€w '

The function w(t,«} is a solution of inverse heat equation (1.39) and henee
it is analytic with respect to 2. Therefore by (1.10) we have the equality
w{t.r) = 0.t € {0,7), # € Q which implies together with {1.3G,), the
relations

Ap(t,z)=0. plen=0
and, hence, the relation p(t.x) = 0, ¢+ C (L. T 2 € §) holds. Thus, ising
(1.36..% we obtain that 2p = 0. 0

1.4. Proof of the main results. Lemmas 1.1, 1.2 and rhe Gilbert-
Schmidt theoremn involve that the operator K has a demumerable system
of eigenfunctions {r,} with cigenvalues Ay > Ay Aj ~— 0 as j -~ .
Moreover, {¢;} forms an orthonormal basis in H'{Q) and for an arbitrary
2 € HYQ) we have:

x n
(1.41) if::}:z',r, then Rz.:z,\,z,e,
FEN

i=)

It follows from (1.26), (1.41) that if y = 3757 jye; then

. . ad £y;e;
1.42) -wT. ) - -l
(1.42) y=uT.) L {4,
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TueoreM 1.1. For an arbitrary ¢ > 0 problem {1.13}. (114}, (1.21}
has the unigue solution {p{t),%.{t)) end

(1.43) pelt) = "3 T=e(cl + R)™1j.

where R 1s operator {1.25) and y, (8} is determined by {1.23), Besides,
relation {112} halds.

FProaf Eguality {1.43) follows from (1.22), {1.42). Relations {1.43).
(1.23) involve the existence and uniqueness of a solution of problem (1.13).
{1.14), {1.21). Let us prove {1.12). It is evident that

{143} if ?i?} H"’ii"} z (;- {’ AY‘; by Z{;:; }E +

+ Z ?a',r

i=N&

For any & > 0 there exists such & that the second tern in the right-hand-
side of inoquality £1.44} is Jess than . For this N and for sulficiently small
£ the first term will be less than ¢ also. O

Tueoren 1.2, Problem (1.1). (1.3). (1.4} 1s " {Q)-appresimate
controllable with respect 1o the control space L{0. 1 HYw)). Besides, tf
{wdt, -} w,{t. )} 15 the solution of problem (1.1}, {1.3). {1.4) with control

(1.45) we(t) = 4, (737 el + A1)
then y. satisfies (113},
Thenrem 1.2 follows from theorem 1.1 immediatcly,

REMARK 1.1, fo AV Furskor, O Yu. Imanwridow (2] appronimate
centrallabiity of the Stokes system has been proved wncanstructively weth
respect to the fullowmg classes of vonirals fhestdes the case vas considered
above). 1. Diunsihies of external forees having the form H{t —to)e{z) where
8f — 15} 15 the Dirae measure and suppy Z w C 2. 2. Densities of ezternal
forces concentrafed on hypersurface § C Q. 2. Imtial value concentrated
in ¢ subdomain & C §1. 4§ Dirichlet boundary values concentrated in
subdomeaing of the boundary #Y. The methods of this section can be applied
1o all cases menfioned above.

2. On approximate nncontrollability of the Burgers equation.
In this section we show that the Burgers equation is not approximately
rontrollable on an arbitrary finite time interval,
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2.1. The main estimate. l.ct us consider the Burgers equation
(21) dwy(t,z) - 53;!!(‘»?) +yd:y=u(t,z),z€(0,a),2€(0,T),

where a > 0, T > 0 are arbitrary fixed numbers. We suppose that a
solution y{t, z) satisfies zero boundary and initial conditions

(2.2) y(t.0) =y(t,a)=0. y(0.2)=0.
Assuine that u(?.z) € Lo([0,T] x [0,a]) and for any t € {0.T) the

inclusion
(2.3) supp #(t,z) C{he), O<b<ce<a.

holds.

1t is well- known that for an arbitrary u € Ly([0,7] x [0, a]) there exists
the unique solution y{t, 2) € Lo(0.T; W#(0, a)) of problem (2.1). (2.2). It is
possible to see, expressing dy/0! from (2.1) that Sy(f.x)/6t € L2((0.T) x
(0, a)). We deduce one estimate for a solution y({, r) of problem (2.1), (2.2)
which simply involves the uncontroltability of this problem.

LEMMA 2.1, Let v € L([0,T] x [0.a]) satisfy condition (2.3}, and
y(t, r) be a solution of problem (2.1}, (2.2). Denote y, (1, 2) = max({y(t,z).0).
Then for arbitrury N > 5 the estimate

b
(2.4) (%/(b —2)Nyd(t.)dr < a( V)V °
[
holds where b is the constan! from (2.3 and a(N) > 0 is a constant,
depending on N only. :
Proaf. We multiply both sides of (2.1) by (6—2)" 43 (¢.2) and integrate

them with respect to £ from 0 upto 8. Integrating by parts in the second
term of the lefi-hand-cide of the obtained identity we shall have

[ [3
j(b -2V (@Gyddn + /(b ~ )N 32 (G:y4 )(Ory)dr -
1] ¢}
(2.5)
] .3
_/N(b-r)i"-‘yia,ydz + /(b-—x)”yiﬁ;ydz =0.
1] a

It follows from the theorem on smoothness of solution of Burgers equation
that y(t.z) € C°((0,1) x (0,a)). Denote y.. = min(y.0). Then

, . 1
yidry = yﬁ(dxy‘r + Gy = le,y+ = zazyﬁ .
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The following identities are proved similarly:

n o Oy, dy =y §§+ ? §3§+ _ 1
+0z bz Vo TFF1 o

Using this equalities and integrating by parts in the last two terms of
equation {2.5) we obtain

[ ]
f{é - ér?gyidz - f{é - r}x3ﬁ{§x§+ }?dx -
o b
(2.6)
] v & v
—/ {i-{ﬁ’- b -r¥-2yidr + f%—{é—:}““}yié.::i}.
[ ]

By the Holder inequality

A

1 1j5 B 475
( {é—:}”-‘é‘d:) ( (b= )V ’éz)
1] G

éh\f'-ﬁ),!' ' Nl 4
/]

Using the Young inequality we shall have

3
/{é — )V i dr
]

{2.7)

i
(2.8) -;f- / (62" "ydde -

/5
NN=1) ixosyss / ¥y . o
“HN st (6 vide| oz -a(NpVE

where a! V) is a positive constant, depending on ¥ > 5 only. Substituting
(2.7}, {2.8) into {2.6) we obtain (2.4). O

2.2. The resuliz on approxinate uncontrollability.

THEOREM 2.1. Le? T > 0 be an arbitrary finite number. Then problem
{2.1), (2.2} 13 not L;{(Q, a)-approzimaiely controllable with respect to set of

controls u € Lo{{0, T} x (0, 0)) satisfying (2.3).
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Proof. Let ii{2) € Ly(0,a), §(x) > 0, y be a solution of problem {2.1),
(2.2) and T > 0. Then

a 1/2 &2 2
( / lg(z) ~ y(T,zJ:”dr) > ( f l#(z) ~y+(T,z)?’dz) 2
0 0

2 llz,00.872) = o (Ts Yl Lyc0,802)

2.9)

By the Cauchy-Bunyakovskii inequality we have:

e (2, ML 023 €
2 b2

1/2 32
(2.10) (/(b - z)"Nd.t) (/(_b - x)N[y.;(T.r)l‘dr) ‘<
o ]

)
1-NygN=1 _ 172
< (9_ (21 - 1)
- N-1

In virtue of (2.1) for any T > 0 inequality

2

/2 1/
(b~ r)“'!y+(’1'.2)!‘dr) |
v

[}
(2.11) / (b = 2)Y |y (T, 2)|"dz < Ta (N3
[

holds. Let T > 0 be fixed and #(x) € L2(0,a) satisfies condition

pi-N(a¥N=1 _ 1) '
r212) "g.!Lz(U,b/?:‘ > (_.___.__———(v = : Tﬂ(l\r)bN"a) +1

Then it follows from (2.9}-(2.12) that for any contro) u & L,{{0. Ty x (N, a))
satisfying (2.3) the solution y of problem (2.1}, (2.2) satisfies inequality

g = w(T. Mz.000) > 1.

This inequality ascertains the approximate uncontrollability of problem
2.1), (2.2).C
Now we consider the Burgers equation with boundary control u:

(2.13) Suy(t,z) -, y+ ydy=0,r€(0.0).L (0, T)
(2.14) $(£,0) = 0.y(2,a) = u(?), ¥'=0 = 0.u € Lo{0.7).

THEOREM 2.2. Problem (2.13), (2.14) is not L2(0,a)-approzimately
controllabl: with respect to the control apace Lo(0.T) for urbitrary T > 0.
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Proof. Estimate {2.4) holds for a solution y of problem {2.13}, (2.14)
and its proof docs not differ from the proof of Lemnimna 2.1. We obtain the
assertion of thenrem by ineans of this estimate after repeating the proof of

Theorem 2.1.0
Remanx 2.1. Actunlly, estimate (2.4) 1s based on the following prop-

erty of solutions of the Hopf equation {1.¢. the Burgers equation withou! the
term 82,y): a pusitive wave moves lo the right and a negatize one moves
{o the left. Therefore it seems real 1o generalize estimate (2.4} on the case
of the equation

(2.15) By + 6;!(;:} -y=

uwith some fly). 1 is intrresting to consider the cace when (L.15) 15 a
system of equations as well as other one-dimensional parabolic quusilinear
systems of equation. I is posside o begun to sludy many-dumensional case
from the many-dimensional Burgers eguation

3
{2.16) av 4 Ez;,-é_,;t' = Av,rot v =0, v}z = - VE{(2)

where ?;{?,3} = {!’;; ta, ?53} is unknowa vecion il feld and E{z 54 FiTER 5 alar

fenction.

3. Absorbing points of reachability for the Burgers cquation.
in previous section the approximate uncontroliability of the Burgers equa-
tion has been proved. The analogous situation takes place for a number
semilinear equations {see [7], [§]). Therefore it seemns to be expedient to
consider some new formulations of the controllability problen: for nonlinear
partial differential equations with nonlinearilies of a power growth.

3.1. Absorbing points of reachability in the casc of the bound-
ary control, We consider the Burgers equation

(3.1)  u(t.2) =0yt x) + 0P (t,2) =0, r€(0,a)t>0
with a boundary coniral

{3.2) gt 0y = u-14). (. o) = uy{f)

and with an initial condition

{3.3) o ¥ Tie=o = wolz)

where ypfr) € L0, a) Is 2 given function,

DeriNtTion 3.1 A finetion {rY € L(0,a) s cafled an absorbing
point of reachabibity for the Burgers equation with 2 boundary control if for
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an arbitrary inttial function yy(2) € L2(0,a) there exist T = T(y:) > 0 and
such controls u;(t) € Li*°(Ry) j = 0,1, that the solution y(t,z) of problem
(3.1j-(3.3) with the indrcated data satisfies condriion

flslt. ) = dliza0.) =0 ¥ > T(wa).
We will need also the other notion which looks niare weak from the formal

point of view.

DerinrrioN 3.2, 4 funclion §(z) € La(0,a) is called approzimatcly
absorbing point of reachability for the Burgers egquation with a boundary
control if for arbitrary in:lial function yp(x) € La(0,a) there exist such
controls u;(1) € L'P°(Ry). j = 0.1, that the solution of problem (3.1)-
(3.3) satisfies condilions

(3.4) flvtt,) = Wlicso,0y —0 a5 t— o

a
(3.53) Vpe ("{3"‘(0,«)/8,y(t.:r)-,:(x)d.t —0 a5 t-—ox.
¢

Firstly. we describe the set of all approximately absorbing points of
reachability of the Burgers equation with a boundary control.

Suppose. that y{x) € L2(0,a) is an approximately absorbing point
of reachability, y(?,z} is the solutivn of the Burgers equation satisfying
conditions {3.4) and (3.5} and

(3.6) w(t, ) = y(t,z) - yir).

Let us substitute w{?,z) + y(z) into (3.1) and scale in La{0,a) the
obtaining equality on ¢ € C55(0. a). Then we obtain the identity

(3.7) f (=82.9(r) + 07 (2))(2)/d= = ] (Ber o+ wdl ot
o [

+(29u + v?)o:2) dx

It is easy to pass to limit in the right-hand-side of equality (3.7) with an
arbitrary function ¢ € C5°(0, a) if we will use (3.4), (3.3}, (3.6). As a result
we obtain relation

(3.8) ~ 02.8(2) + 85 (2) = 0.

Thus, we have proved

LeEMMA 3.1. Ify(x) 1s an approzimately stable point of reachability for
the Burgers equation with a boundary control then §(z) satisfies equation

(3.9).
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We set
(3.9) ¥{(0) = ay, 9(a) = a2

and show that an arbitrary solution of problem (3.8). {3.8) with finite ¢,
ay is the approximately ahsorbing point of reachability. For this we, firstly,
solve problem (3.8). (3.9}

T.eMMa 3.2, For arbifrary finite oy < a2 there exists the unique solu-
tron {2} of prodlem (8.8}, (3.8). Moreorer

if as — a: > aaja then y(r) = fetgl/e(z + d))
{3.10) ifas —ay = anyas then §l{z) = ~1/{z + d)
if ag — a; < aajoy then H(z) = —Jreth(Je(z + d)).

Foray > ay problem {3.8), (3.9} has the solufion

{3.11) gz} = o, ifer=as
{3.12) ) =Veth(Ve(z + d)). ife: > az

and the constants ¢.d in {3.18)-(3.12) arc determined uniguely by a;, a3

Proof. Integrating (3.8} one time we obtain
(3.13) Oy=i +c
If ¢ > U then integraling {3.13} we obtain the equality

{3.14) —};aretg f";; =xr+d

which implies (3.10). We show that the constants ¢ > (,d in this equality
is determined uniquely by a1, ag. It follows fram (3.14), (3.9) that

ay/¢ = arctg :—% -~ arctg i—%

Applying to the both parts of this equality the operation 1 we obtain
that

tg (ay/7) = Velog = 01)/(c + a102).

Solving this equation by the method of graphics we obtzin that if a3, a2
satisfy condition {3.10;) then the unique positive solution ¢ of this equation
exists. ‘

H ¢ = 0 then we obtain {3.10;) after integrating (3.13). Fquation {3.13)
with ¢ < § implies the equality
y=a

(3.15) ! .
“ § ,gf;-

e

= {2.,&?1:4-&)
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where ¢; = —e¢. It follows from (3.15), (3.9) that

»e  [(02= 701 +7)
(a2 + 7)(01 —9)

where ¥ = \/¢;1. Solving this equation by method of graphics, it is easy
to show that this equation has the unique positive solution if @), a; sat-
isfy condition (3.12), (3.103). The case (3.11) is evident. Thus, we have
obtained the complete substantiation of (3.10)-(3.12). O

THEOREM 3.1. Let a;, as € R salisfy condition az > a; and y(z) is
a solution of problem (9.8), (3.9). Then j{c) is approrimately absorbing
point of reachability which can be approached by solution y(t,z) of problem
(3.1)- (3.3) with control ui{t) = ay, uy(t) = a;. Morcover

ot I, 0m S € Mive - 61,0,
(3.16)

al
/"a:“'(‘s')”i,(o.a)d' < v =300
0

where w 1s function (3.6). X > 0.

Proof. Let y(L. x) be the solution of (3.1)-(3.3) with uy(t) = ay, uy(t) =
as and w be function (3.6). In virtue of (3.1)-(3.3), (3.8), w(i,r} is a
solution of the problem

(3.17) dw =02, w+ 20, (wf) + 0-u? =0
(3.18) w(t,0) = w(ta)=0. w(0,2)=ylz)~§z)

Scaling in L9(0,a) both parts of (3.17) on w(f. r} and taking into account
(3.18) we obtain after sitnple transformations, that

(3.19) %c'hnw(t, ME, + 0w, ME, + /(0,ﬁ)u:2(t,z)d.r =0
o

~ Let Ay be the minimal eigen-value of the spectral problem
~0%:u(z) + (8, §(2)e(z) = Ae(z). (8} =tla) =0

Since by Lemma 3.2 the inequality d:%(z) > 0 holds, then Ay > 0. It
follows from (3.19) that

1 19
SOl M 0.+ Al ME 0.y S 0.
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‘This inequality and (3.18} imply (3.18). Rclation (3.5} is deduced easily
from {3.16}, (3.17). B

Let y(t,z) € W5 ((0.7) x (0,a) = {y € Lo(0, T, W} (0.a)) : Dy €
L5(Q)} be a solution of equation (3.1) and B, () = {=(z) € W}{0.a) :
llz = gollw; < r) be the ball of radius » with the center yo € W}(0,a).

TREOREM 3.2. For sufficiently small v and for on arbitrary 22{z) €
B-(§(0.2)) there ezists the solution 2(t,2) € W3 2((0,T) x (0,a)) of equa-
tron (3.1) which safisfies condifions

:{G' 3‘} = :*3(:)! I(T, 1‘} = 3}{? ::E

We denote 2(f,2}l;=c = v:{t), :{t, r}l;24 = ui{f). By means of The-
orem 3.2 boundary cuntrols wa{t), u {t) transform the solution z{t,z) of
(3.1}, (3.2}, {3.3) with y. = zy to the given solution § at moment T :
H{T, 2} = y{T. ). The proof of one more general assertion than Theorem
3.2 will be given below at subsection 3.1 of Section 5 (See Theorem 5.1).

Turouem 3.3, Let ar. az € R salisfy condition as > ay and {z)
¢ a solution of problem £33}, [3.8). Then Jz) is an absarbing point of
reachability for the Burgers equation with ¢ boundary control

Praaf. Let y{t.z} be the sclution of problem: (3.1} {3.3) with ue{t) =
a;, u:{t} = a;. We apply Theorem 3.1. By virtue of (3.16} for = as sinall
25 we want there exists such ¢- that

etz 2w sz o = Nolto. £) = w(=)lwpr0,0) <7

Now we apply Theorern 3.2 with §{t. ) = j{r), z:(r} = ylts. z). In virtue
of this theorem by mneans of correet choice of houndary controls it is possible
ic do that the corresponding solution 2(t. z) will coincide with §{z) when
t=7.10

The solution H{z) of (3.8}, {3.9} is an ebsorbing point of reachability in
the case when a; > ay. This assertion will be proved at the end of scetion
3.

3.2. Absorbing points of reachability in the case of local dis-
tributed control. We consider the Burgers equation with distributed con-
trol

{3.20) Byl x) = B2 y(t.x) + A = uft, z)
with periodic boundary conditions

{3.21} ylt.r > 2n) = yit, 2) ult, 2 4 27y = u{t, z)
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and with initial condition (3.3). We ussume that the support of control
u(t, ) is concentrated on subinterval

(3.22) suppu(t,) C | J((a,27) + 27k) VI >0.
ke

Note that by (3.21) we can suppose that equation (3.20) is defined on the
circamference S = {z € (0,2x); the points 0 and 27 are identified}.

As in Definition 3.1 a function y € L2(S) will be called an absorbing
point of reachahility for problem (3.20)-(3.22), (3.3) if for an arbitrary
initial function y, € L(S) there exists such control u(t,z) € L¥(2 4 x S)
satisfying (3.22) that for the solution y(t. x) of prablem (3.20), (3.21), (3.3)
the relation

(3.23) flutt.} = glleis; = 0 when (>

holds where t; = ¢1{yo §) is a sufficiently large number.
We show that an arbitrary solulion g{r) of equation

(3.29) ~82,.4(z) + 0: () = f{z),
‘ whete f(r) € Lo(S), supp f € (a,27)

is the stable point of reachability.

Turorem 3.4, Let j{z), £ € § satisfy cquation (3.2]). Then § s the
absorbing point of reachability for problem (3.20)-(3.22). (3.3).

Proof. We denate
a; = $(0),  az = j{a).

Then §{z) is a solution of problem (3.8), (4.9) on interval (¢, a). Therefore
in virtue of Theorem 3.3 y{!,2) - §(2) = 0 if t > ¢; for the solution y(t,2)
of problem (3.1)-(3.3) with the controls uc(t). u:(f) chosen correctly.

Let ()€ C™{a.27). j = 1.2. and

L ze (a.at 2752
pilz) = ) pAr)=1=¢:(7) .
0. rz€(at (27 -a)27)

Let w(f,.i) be furction (3.6) defined for z € (0,a). We extend the function
w(t,z) from r € (0.a) up to # € S by formula

v _ w(t. z),r € (0.q)
(3.25) wi(t,z) = {m(r) (4u: (.32 - §) - 3u(t, 20 = 1)) =

+ ¢afz) (:lw (l,w - %) ~ 3w(t,2x - 1‘)) .2 € (a,27)




ADA294785

168 ANDREI V. FURSIKOV AND QLEG YU, IMANUVILOY

It follows immediately from {3.25) that

wi{t,a-0). Sl :}L-:,,;.a = J.u; {, z}%;.:c-g
qv;{t,e},éxw;{#,z)iug, = 8, 1w (. 2)lren

wy{t, a+0)
ﬁ:}{t,?#}

By means of this formulas and {3.23) it is e2sy to deduce cstimates

I

{3.26) 8wt ilrsy £ ellfonlt, Mz 0.0
(3.7 st Mgy <€ et Moo

with a constant ¢ which £oes not depend on 2. It follows from (3.25) and
from the method of construction of w{t, ) that

{3.28) wyll.z}=0 whent>t
We denote
(3.29) wlt, 1) = wyt, 2) = §(z)

and define the function u{f, r} by the cquality
(3.30) u(t.2) = By — Gy + 0r 4l

It follows from estimates (3.26), (3.27) that u(t. r) € LY“{R; x S). Besides,
equalities {3.29), {3.25) imply that p{l.x} = y{t.r) for 2 € (0.a) 2nd
therefore by {3.30) the inclusion supp u(t. 2} C K. x [a.27] holds. Note
that it follows from {3.28), (3.20) that y(t,2) = §{z), ull. z) = J{z) when
t > #;. Thus, the conirol v{l.r} defined in (3.30) transforms the initial
function yo{z) by trajectory {1, 2) to §{r) during a finite time. D

ReMark 3.1, Apparenily, some generalizalions of the sechion’s 3 the-
ory can be done on the case of semilinear one-dimensional parabolic equa-
tions as well as on the case of equations (2. 15]). I is possible to {ry {v con-
struct the theory of section 3 in the case of the many-dimensional Burgers
equation {2.18), taking inlo accoun! that this equation cun bt roduced lo the
heat-equation as in one-dimensional case.

4. Exact controllability of a linear parabolic equation. Toprove
the Iocal theorem of exact controllability for the Burgers cquation we es-
tablish in this section one theorem on exact controllability of parabolic
equations with variable coefficients in the Sobolev space W;'*(Q). Note
that analogous results on the exact controliability of linear parabolic equa-
tions in the Sobolev space WH-5(Q) was cbtained by . Yu. Imanuvilov
{ [11)- [13]). Here we use such important tools of these works as Carleman
estimates.
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4.1. Formulation of the problem. Reduction to the homoge-
neous boundary conditions. In the domain Q@ = (0,T) x Q. where
) = (=2.2) we consider the linearized Burgers equation

(41) Ly =8iy(t. r) - B y{t.2) + B: (1. 2)ult.2)) = 0. (L.2)€Q

where 2(t,z) € W,‘J(Q) is a datum and y(t,z) € W-}"(Q) is an unknown
function. It is assumed that y{t, r) savisfies conditions:

(4.2) ’ ¥(t.2) =0
(4.3) ‘ y(t. 2)li=7

where yo{z) € WHQ) is a datum,
We use the following functional spaces: the Sobolev space W¥(Q) of

]

yo(r)
0.

(-2
functions defined in ! and possessing finite norm (1.8), the space (1Y 5{Q).
that. is the closure of C3°(€2) in norm (1.8} and, at last, the space

Wyt = {y(t,2) € L(0.T:W5KQ))
Yt ) € L0, T W2, j=1,- .,,},

e T
oad Wt A2
Hyﬂ“.-;,u = Z/llng(f- )“u-;““"";md"

j=0 <
The problem of exact controllability of equation (4.1) is as follows: one
~must. find such boundary controls v; (1) € L2(0.T).j = 0,1, i.e.
(44) y(l,-t)l::-z = t’-(l)..v(', z)"::! = 14(1)

that the solntion of mixed boundary problem {4.1), (4.2), (4.4) would sat-
isfy condition (1.3).

We reduce the problem of exact controllability to a similar one having
initial function yfr) from (4.2) which equals zero. Let y{t,r) be the
solution of problem (4.1), (4.2}, (4.4) with the boundary conditicus v2(t) =
0. The solution y(!.2) belongs to W;‘Q(Q).

Let ¢(8) € C™(0.T), ¢(t) - 1| when t € (0‘?3-), g) S0 whent €
(%'I',T)‘ Denote

{4.5) ylit.x)=x(t, )e(t), Ly= - folt. )
It is evident. that inequalities
(4.6) felizaig € e:lillwsag, < collyeliwyim

~ hold where the constants ¢;, ¢y depend continuously on fzhwr2.0:-
12Q;
We set

(4.7) yit,z) = w(t,2) = (1. z)
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where (1, z} is function {4.5}, It is casy to show that the following asseriion
holds.

PRrOPOSITION 4.1. A function y{i. 2} € Lo{(Q) is o solution of eract
confrollability problem (4.1} (4.3 if and only if the funclion wli, z) defined
in {{.7) satrsfies eynalifres
{4.8) Lw = fa
(4.9 u{t, 2}li=c 0, wt.x)=r=0

where f- is she funclion defined in ({5}

4.2. Boundary value problem. Thus, our problem has Leen re-
duced to construetion of a function w{t. 1) € L2{Q) satisfying (4.3). {(4.5).
We consider the following extremal problemi: To minimize the functional

(4.10) Jey= 4 / w3, 2)dzdt — inf
Q

on the set of function~ w »atisfying (4.8}, (1.9)

LesMa 4.1, I alt, 2Y C Lo(@) 15 a solution of problem (1.10). {{.8),
(4.9} then there exisls the function pli. x) satisfying the relairons

(L11) L'p = 8:pit,2) 1 82, p(t. )+ z(t. 2)0ep{t. 2) = w(t, 2). (L. £) € Q
{";'12} F{t-‘ﬁ_ﬂ;:ﬁg = 0; a:nge :}tt=f'2 = 8

The proof of this lemms can be realized, {for instance, as in O, Yu.
Imanuvilov [20] in spite of it's complication. But we do not need to have
this proof, as well ax a proof of the existence theorem for extremal problem
{4.8)-(1.10}. The point is that 1o prove the solvability of problem (4.8},
{4.97 it is sulficient to prove the solvability of problem (4.8). {(4.9], (4.11),
{4.12}. Prollem {1.8)- {1.10} and Lenzuna 4.1 are usclul only 1o understand
how boundary value problem (4.8}, {4.9). {4.11). {4.12) was obtained.

To exclude from (4.8}, (4.8}, {1.11), {1.12) unknown function w{?, 7}
we apply 1o both parts of {1.11) the operator L. By means of (4.5} we
oblain eyuation

{4.13) Li'p=fo {t,Lr})EQ

Besides boundary conditions (4.12}, equation {4.13} safisfies the boundary
conditions

4.1 Lphi=c =0, L'pizr=0

These eonditions arise from (4.9). (4.11}.
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4.3. An apriori estimate of Carleman type.

‘THEOREM 1.1. Lel p(l, &) salusfies relatione (4.1}, (§.12} where w(t.2) €
Lo(Q). Then for an arbitrary r € (0.7) and sufficaeatly large k the esti-
mate :

(1.15) /‘(!(im!? + 02 p1° + 182 + p"’)cul?'.'?drdt +
Q
+ /‘ epir. )P + p {7 )" EE P
e)
< r/u':'(l ridrdt
Q

holds where the constant ¢ depeads confinueusly on 27" 1: .
W, '@

Preof. We consider the functicn
{4.16) S ry=hlr~4(T 78—t
For an arbitrary s = U we define the operator
Mu . e~ L% %y}
where L* is oporater (Lil) ‘Lhe operater M ocan be written m the fam
Mu=Lu = s(8 b 200, i+ {850 ELIIN R IR W

W~ iutreduce also the operators

(4.17) M, = # 4 e My= il 4 20, 20,
Denote
(118) w=r “"p. wy= " fo = cdoumnel@ o P o)

It is easy to sre that rgnatien (4 11 s eogivalent 1o equality
(4!9) 0:1\!; + .’h'ﬂu = «y 4 f_.‘
where M; . My v oy fy are dofined iv (4075 (4153 1t follows from (1103

that

i R

(4.20) Bh 4wy, g = WMo,

Y B VARSI R P TR Y PN
Gl Q'-+5" ._f‘u V-",'L, I

We transforoe the last term in the right hand-side of {120 Takin nte
account that by ¢4.12;, (1 1€;. {1 18} the relations

(421 R R S S TS ETR
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hold we obtain

%

(4.22) 2(92.u+%(0:9)°u.  Gpu+28(8:2)8:u) =
- 2[["&&(&:3}34— Li04) (8;";} Bl
@

+5{8:2)8:(8-1)* + 8°(0r)%0ru }ff:dt

- j 2000 wdrdt +
2
- / (-8 o) (26(pu)? + 65785 )20 vt

It follows from (1.18) that

423 4f + “'EIE;:.’Q; < eylifwlff, gy iz ﬁ;w* Q;.W?r*if: gt
4-82{{{3:&-’355?22;;:}*%isz;;;-ziqz HOrp)ull} @+ HPeew)u"] 1))

Substituting {1.22), {4.23) into (4.20) we obtuin that

{4.24)2 /!‘-—:'} 1] 53 u{B:9)? + s(Au))drdt +
Q¢
Ef:\f;tfﬂi Q;+ *f3'~f§ LG <
(g ﬁiug {Q} 'i gi‘ﬁgri 2-Q~§i‘é};§§i‘i (&3] + 33{ ‘:ﬁ;;}ﬁ %;EQ} =+
g:ﬁ’ {4 -r}*‘ «sg}a . :rrE:f; qs"'
+ / 223;{3,;3'*’53'%:&:1&
Q
‘Taking into account that by (416} =83, s> e s Q2.5 > 0and
(2l < el =] 230050 1B, ¥ | € 2l =02, WD 2)

T LR L I I o
Fr, R %o xe R Eratac

ser obrain that for sufliclenth Iarge sineguality {4
BN

{4.25) [{» AT w02 ~ A8 dedr 4 LMy el L+
- - at i g

HVouilf g, S ¢ sijeylly Q-

whete oy I8 a cunstant which depends continnously en ,.ﬁﬁ,,,_,.f\,*
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Note that the following relations hold

1L, 1[0t .
. o = 2 = = | (Mau = 288, 0)8-v) ir
(4.26) s!aﬁwﬂq drdt s/a”(uzu 258, p)d-v) drdl <
Q

/ (53)2',.‘!“3?42 + 8s6,¢|6,u!2) dzdt <
b L2 4

<4 j (Muf? + 0 o|Ooui?)drdt
Q

(4.27) / -—I-((?j:':u)"'drdt = /
Q Q
<cs ‘/(:.'\Iluf2 + &(0:0) jul?drdt
Q
It follows from (4.25)-(4.27) that

) - g2 ¥ 22 dt <
vt (i) uydrdt <

(4.23) / —,—l—(ftl,uF + Iaﬁ,ul?\ 4 8- pl0eu 2 4+
st /
Q

+(*{8ep)u?} drdt < el o
Ji is easily dedured from (4.28) that for an arbitrary t € (0. T}

1 , . ?
(4.29) /(E-;ﬁ’—r:.-ldru(t..r)l2 + (L‘,¢(t..r)]x:‘(1,1“l) da <
n

2
< clleally i
Returning in (4.28), (4.29) fron: the variables u, vy to the variables

p, w we obtzin the inequality

1 1 e 2 .
(4.30) _/[;7]-;;‘.(3:/‘1?' + (6,1 + (80N B, p)
sy
Q

‘ . @it r )
+8* () p? eV drdt + / Lol T),
61"1’(': J')
£ \ 9
+02(t 1) ’U,r))t.’* <c /r""’u"’d:df.
Q
Since p satisfies invers parabelic equation (4.11) and boundary conditions

{4.12) then for an .ebitrary t € (0. 1) the following estimate holds:

4 2 e, 2
(430 P St s rivns S € (_“F’“- Hivign) + ii“‘.'L,«'q.)
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Inequality {4.13) follows from (4.30}, (4.31). D

4.4. Unique solvahility of the boundary problem. We define the
functional space ® of functions defined on eylinder @ for which the norm

(132) 1Pl = LBl gy + [T (Gl + @'+
q
'I‘(&:?}z i’}’?) dzdt

is finite and houndary conditions {4.12) held.

DerintrioN 4.1, A funclion p € ® 1s called generalived selution of
problem (413}, (§.14) if of salisfies the cquation

(133} (L. L 9dry0 = ~{fo.glr,io Yg€d

TuEOREM 4.9. Therr exists unique generalized solution p € @ of
problem (4.13;. [{.14). Far au arbitrary subdomain 6 C §2 the function p
belungs to !&'5’4{?3} and safnnfies equation ({.13) as well as boundary condr-
tions (§.14) whick are understood as cquabtics 1n the space W1 {Q).

Proof. By virtue of (4.5) supp fu € [%, 4] x Q and, hence. applying
Theorem 4.1 we obtain the inequality

e
4T3 12

(131) (it € T | [ odrat] <
T3

S €g4{§b2fﬁ’5§§ff§

This estimate shows that the functional g — (f5,9)7..) is 2 rontinnous
onc on & It follows from Theorem 1.1 that the norm generated by the
sealar product (L*p, L™¢)1,iq; is equivalent to the norm {[- ¢. Therefore
the existence of the unique function p € € satisfying {133} follows from
the Riesz theorem on the representation of a functional on a Hilbert space.

Equality {1.33) with g € CZ{Q} implies equation {113} undersiond
in the sense of distributions theory. Since the operator 1L is hypoelliptic
(see L. Hérmander [21]) then p € W24(8) where 4 C Q i¢ an ahitrary
subdamain of Q. Using the denotion & = L*p we obtain by {(4.32) that
w € L.{Q} and by (4.13] that

(4.35) Lu= fh€ LAQ)

where £ is operator (4.1). Since v £ Lo{Q) then 62w € L(0. T W, 20
and expressing A from 11 33) we obtain that dow £ L0 T 1,510
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Therefore, using the theorem on restrictions (J.-L. Lions, E. Magenes [14])
it is easy to show that the restrictions w(0, -)j w(T -) of w is defined in the
space W; (). Integrating by parts in (4.33) with ¢ € C>(0Q) sarisfving
(4.12) we deduce thar w(T,-) = w(0, ) = 0. This proves (4.14). O

4.5. Compact dependness on cocfficicnt.

Levma 4.2, Let pa be the solution of problem ({.13), (4.1{} with
coefficient : = zn (see (4.1), (4.11)) and wn = L*p,. Suppose that zp — 2o
weakly in W3(Q) as n — x. Then

{4.36) wn — Wo strongly in Lo(Q) asn - x.

Proof. Tt follows from definition (4.5) of f; that
(4.37) Jo(zr) = folzs) strongly in Ly(@) as n — oo

(4.38) folzn)it,2) =0 when t € (%I,T) Yn

We prove {4.37). leat 2, — 2z weakly in V;"?(Q) and yn be the
solution of problem (4.1), (4.2). (4.4) where v4 = 0 and coefficient z = 2,
in (4.1). Denote v, = xo ~ Xx». Then

(43Q) vy — 0::7-)7 -+ 0:(:!)1"‘.) = E’:((:n - Zu)\"),

""’ll'-:(- = 0! ""I:-:: = 0

In virtue of compartuess of the embeddings H":,"Z(Q] g CQ). W.} ‘e
Ly(0.T: W3{2}) and houndedness of |ix. [lyy1.3, g, we have that

({20 = 2c)xn) = (Felzn — 2:))xn ~ (20 = 20} X — 0in Lo Q)

as &, — 2 weakly in ug‘-'ﬁq;.
‘Therefore. taking into accoumt a well known estimate for solntions of
problemn (4.39) we ohtain that

(]

ltallys 2 g, = 0 28 0 — 2y weakly in Wl %Q)

Relation (4.37) follows feom this one. Let p,, be the solution of equation
(4.33) with the coefficient : = z,,. We substitute 2 = z,, p = g = p,, into
(4.33). Then takiuyg into account (4.37), {4.38) and cstimate (4 15) wr
obtain as in (4.34) that

e 30y < el @ Mnl gy where we = L7,
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and, hence,
en o) S ¢ folleaq)

where ¢ docs not depend on n. It follows from this estimate and from
uniqueness of the solution of problem {4.33) that

(4.40} w, — g weakly in Ly{Q).

Applving (1.15) we establish analogously that

{4.41) pn — pp weakly in I, ((ﬂ: gg-‘) X Q)

Substituting into {(4.33) p = ¢ = p,. and taking into account (4.41}, (4.37),
{1.38) we can pass to the limit in (4.34) as n — oc. As result we can obtain
that

{4.42) f;%i’ﬁ??i}{(;; = {fﬁ{3n hpndrag — {ﬁj{-’ﬁ};f’is}{;{?; =

ﬁ*ff't'-ﬁ;;{‘;;)

]

asn — .
Relation (4.36} fullows fram {140}, {1.42). O

We prove also one lemma which will let o establish the compact de-
pendence the function w on the coefficient z in the space H’;'?{Q}.
LEnaa 4.3, Let w(t 2} € LolQ) safisfly the relations

{‘iég‘} L!i’{f* 2} = f{fv 2«'}, {f.f} -‘- Qt”'ii.‘:i‘ = G

where L is operator (§.1}, f € Lo(Q). Denote p(r) = {4 = £%). Then for
the function w the following estimales hold:

{1.44) sup f wpidr + [ (D:w)pdedt <
1£{0.7} A 4

=3 (} + Hzﬁ“’;”f@}) ( ﬁ"ﬁg;gqg - /fap*t}";’fff)

{4.45) / {{é’;zf:}3+ {5'{3,?:.'}2) Fidrdt < o (ﬂ&'}fi@;-& f fap‘i:frd?) x
Q <Q

xv (14101 20n)

uhere 4{2} > 0, v{A) > U arc continvous functrons.
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Proof. We scale in L(@) bolh parts of (4.43) on wp?. After simple
transformations we obtain the equality

¢
%& / wiplde + / (8:w)’pdr + % / 8: w0 pPde -
S a b

- /zw ((8:u)p* + wa,pz) dz = /pr’rl.z
1

a

After integrating both parts of this equality with respect to ¢ we obtain the
estimate

| 4 t
/u'?(t.:r)p?(;r)df-}//(.’),u')7p?drdt < c//u:zdm’t~
g T of

o
]
! , ,
-(1 += 2.6, Iz Il,(q,) +3 j ((m)’ ‘drdt + / / fptdrdr
0 z [ 3 1)

Carrying the term with (8.%: ;2 from the right side to the lefr one, we obtain
(4.44).

Multiplying (4.43) on p? and doing simple transformations we obtain
the equality

(4.46) B(wp®) = 82, (wp?) + O:(zup’) =
10° = 2A0:w)0,p* — wd p* 4 2ubpp”

Funclion wp? satisfies equation (1.46) as well as the following initial
and boundary conditions:

(4.47) wplize = 0, wplle=x2=0

Applying o the sofution wp? of mixed boundary problem {4.46). {4.47)
well-known inequality

llwp?llnsaggr < €iifp’ = 20ew)Bep’ ~ w01 0Q),
whete ¢ depends continuously on “Z"w;"(Q‘, and estimating the right-hand-

side of this inequality by means of (4.44) we cbtain (4.45). L

4.6. Termination of solution of the exact controflability proh-
lem. Thus, we study the following problem of exact contrellability: In the
domain Q) = (6,7} » Q; where @y = /=1.1) the equation

{(1.48) Byt x) - B2yt 2) + O (2(¢. 2l 1)) = 0
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is considered with initial condition

{1.49) Yt z)l=0 = mlz)

One has to find a solution of equatinn (4.48) which, besides (4.49)
satisfied the condition

(4.50) wt. 7)1 = 0.

Tueowsm 4.3. et functions =,(t,2) € W ?‘Q;} yi(z) € WHQ) be
data. Then there exists a solution y{t,2) € Ii *Qy) of problem (4. 48}~
{4.50). Besides, ol is prasible to define the map, transforming coeffictent
2t 1) f& :z solution 1 ;1‘ z) of problem ({.{8)-1{.50), which act compactly
from H 30 to H Q).

Proof. Let R : ii"g Q1) — L%';'?{Q} be the lincar continuous operator,
which extends f{f.z), {t, 2} € @, up to a function Rf{L,2), L. Y€ Q@ =
{0.T)x(-2,2) and R : W}{Q) — W} () be a linear continuous operator
of extension of a function 5 from huptoQ = {~2,2)such that Rigsn = 0.
Dencte z = Ry  yp = R:ys. Then

(1.51) “:ﬁ;;';-f;Q;S{'F 2;{1-{{!}1;‘ Harells AQ;ff}F.‘?’. H ety

where constants ¢.c; don't depend un 7y, correspondingly. We consider
instead of {4.48)-(4.50) problemn (4.1} (4.3) defined in the wider domain
Q = (0, 1) x{=2.2). Tosolve it we pass to problem {4.5). {4.9) by transfor-
mation {(4.7). To solve (4.8} {4.9) we use boundary value problem (4.13),
{4.14) which has the unique solution p € @ in virtue of Theorem 4.2, As it
was shown iu the proof of this theorem, the function w = L™p where L* is
operator (4.11). satisfies relations (4.8), (4.9) and the inclusion w0 € L4(Q).
By means of i.t-:nms 4.3 the restriction outa @) of this function belongs
1o the space ﬁf %(Q,). Dennte by ¥ the map that transforms corflicient
T E Ii’ Q) from {4.1} to the function «. and let y be the aperator of re-
striction of a function fror Q onto Q1. We show that the operator (¥ acts
compactly from W LH0) o 1P (Q;} In Lemma 12 it was established
that the operator

(4.52) ¥ Q) — 1.0Q)

is compart. To mark the dependence of oprrator 7, from {4.1) on = we
denote it by L{z}. Let

{4.33} Lichr < fo. o4 8y = §-

and w. u- arceqpal zoro whent =0t = T
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We denote
(4.54) v=t -

Substituting (4.53;) from (4.33;) we obtain the equality
(4.55) Do = 02 v + O:(zv) = B ().

Applying estimate (1.15) to equation (4.35) we will have:

(1.56) / (B} + (G201 + (Be0)2p7] dadt €

<e(1+1"wpaer) (”""i""’+

+16Egy [[(0rwr)?ydnde +
Q

HI o r - [ oot
Q

Applying inequality (4.44) to the equation L{z +8juy = fo we can see that
for [|€]iws 2, < const the inequality

/ wip’drdi - / (Brun)ptdrdt < 0
Q Q

holds where ¢ does not depend on . Therefore by the compactnvw of
operator (4.52) and by the compactness of embeddings ¢ (@ o Wi o (Q},
La(0,T;WH(R)) 3 W) it follows from {4.56) that

(4.57) / [(€8ev) + (92,6100 + (O v)’p?) dadt — O

as & — 0 weakly in 1V} °(Q). Relation {4.57) implies the compartness of
operator

(4.58) VW Q) — W Q)

Applying estimates (4.51), the continuity of the operator \ ¥ aud the com-
pact dependence of the function § from (1.5) on 2 proved in Lemma 4.2 we
ohtain assertion of the theorem on the compad dependenee of the solution
y on the coefficient 2. 2
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5. The local theorem of exact cuntrollability of the Burgers
equation,

5.1. The main theorem. Let in the domain @ = (0.7) x ) where
4 = {=~1,1) the Burgers equation

(5.1) Gy) = dy(t.z) = B2yt z) + 8-9°(1,z) = g{2).(1.2) € @,

be defined where g(r) € L2{$);) is a fixed function. We consider a function
glt.z) e W, 2(Q,) satisfied equation (5.1). Introduce the denotions

(5.2) #0,2) = go(z).  §T.2) = yr(z).
Obviously, go{r) € W2(Sh). #r(z) € WHY). Lt
(5.3) B.(s)= {.!f € W) s lly - zlhwpe; < *'}

be the hall of radius r in W}{§};) with the center at the point z. The
preblem of local exact controllability of the Burgers equation is as fol-
lows: To find for an arbitrary initanl function ya(z) € B.{§) where r is
sufficiently small number, such boundary control {v_(1).v. (1)) that the
solution y{f. z) € it’g"‘*({};} of equation {5.1) with the boundary conditions

{54) . -1y =o.{t), y(t.1) = veft)
and with the initial condition

(53) Yt 2leme = ()
satisfies the equality

(5.6) Yt 2t = i (z)

where gr{z) is defined in (5.2}

TuroReM 5.1, Jf r is suffiviently smell then for an arbitrury y.{2) €
By} there exists such control (v {8), vp (1)) € (€0, ?:)}"’ that the soln-
tion y(t,r) of problem (5.1). (5.4), {5.5) belongs to W *(Q) end satrsfics
condition 13.5).

Proof. Tt is sufficient to prove the existence of such ball B0y C
W) that for arbitrary £2{z) & B.(0} a solution £(t,2) € %‘F-j‘ Q.
of problem
(5.7  8E(L.z) - 816+ 2051, )8, 2N+ 8,8 =0 (L2)eQ
{5.3) E{t. 2)i=s = 52}

(5.9 Et.x)iey =0
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exists. Indeed, if we possess such a function £(¢,#), then the function

wt.x) =&t z) + §(t.2)

satisfies all assertions of th_e theorem, because it is the solution of problem
(5.1), (5.4), (5.5) with yo(z) = gn(x) +£o(z) and with the boundary control
(v- (1), e (1)) C (C(0,T))® which is the restriction of the function y(1,z)
at r= £l

For an arbitrary function & € w;-’(Q,) we consider the operator

(5.10) L(6)E = O,& = 02,€ + 26:(§€) + 8:(8§) = 0

and look for a function § € W._,”(Q,) satisfying (5.8)-15.10). We dennte
by @ the operator

(5.11) 6: Wy Q1) — W¥Q))

which transforms a function {25+ #) to the solution £ of (5.8)-(5.10) which
has been built in Thecrem 4.3. Operator (5.11) is compact as it was shown
in Theorem 4.3. Besides. relations (4.6), (4.8), (4.9). (4.44), and (4.15)
imply the inequality

(5.12) HElhv;2(q,) S Oy + Elliq,, <
<3 (I2v + llyyo1q,)) lEclinin)

where 2(A) > 0 is a certain continuous function with respect to A > 0. It
follows from (3.12) that for any & € B.(0) where radius r is sufficiently

small the operator 6 — 8(y+&) transforms the ball By = {Ilﬂl;v;-ﬁq,, < 1}

into itself. ll2nce, by the Shauder fixed point theorem (see, for example, L.
Nirenberg [22]) there exists £ € By such that £ = 6(2y + £). This function
€ is a solution of problem {3.7)-{5.9). O

5.2. Some corollaries of the main theorem.

DEFINITION 3.1, A srt B C W}HQ) is called an abserbing <ct of rench-
ability for the Bargers equation if for an aerbitrery funclion y; € W}(Q)
there exist suck fune moment T and a control (v_{t). ve (1)) t > O that the
solution y(t,x) of the boundary problem :

Gy =9(x), Yh=o=m. yl,=1)=u. 0t Wt 1) =esl)
belongs {o the set R for anyt > T.
We consider the Burgers cquatic. (3.1) with zere houndary conditions:

(5.13) ylt. 2}-2q1 =0
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It is known that the dynamical systems generated by (5.1} (5.13) possesses
the (W2(). (1¥}(Q))-attractor (sce A.V. Babin, M. Vishik '23),

'THEOREM 5.2. The altractor of dynamical system (3.1}, (5.2} 1w an
absorbing set of reachabilify of the Hurgers eguation.

Proof. It is known (A.V. Bahin, M.I. Vishik [23]) that the attractor A
of dyaamical system (5.1). (5.13) is @ bounded, closed set in WJ({;). By
virtue of the definition of an attractor for an arbitrary trajectory y{i.-) of
dynamical system {5.1), (5.13) and for any 8 > 0 there exists such time
snoment 7 that

dist (4,y(1,) <& VI T
W,

Choosing & sufficirntly small we transfer the trajectory y of the dvnamical
systern onto artractor by means of boundary control {v_{#). v4(8)) which
existence has heen proved in theorem 3.1, After that take vy {8} = 6. By
the invarianmness of the set 4 the trajectory will remain on the attractor
during all posterior time. D

Let for a function g{r} € Lo{Q) the boundary value probiem

<8, (2} + 8% (2) = 9(2). Y2 Nrmp1 =0

by ¢ rrale

has several solutions 3 {r),. .., gniz ) {Surcly, they are «inpulor pel
Jdynamical system {315, {5.13)).

TreoREM 5.3. Let {y) C W3(Q) arc singular points of system (5.1),
§5.13}. Then for wny § = L. N there exists a aumber 1, = vy} > 0
such that for an arbitrary y2 € B, {y,) the solution y{t, 2} € H’.j"‘{é);} of
the eract controllobibly problem

Gu=glz). Ylh=9=4 ¥Y-T=u8

erisis,

This theorem is an easy coroliary of Theorem 5.1. It means that an
arbitrary singnlar point of dynamical systems (5.1}, {3 13} {fur instance,
the hyperholic onc) is the stable if we can uvse 2 boundary control fur
stabilization.

The knowledge of attractar’s properties can be applied {0 the nvestiga-
tion of absorhing sete of reachability. As an example we give the kilowing

Prorositioy 5.1, Lef o sungular pornt yir} of system 73,1}, (5,13}
possesses the property: An wrbifvary tragectory of sydfem (313, (5.1.3) ¢
longing te the pliractor A inderacets a suffiriently small nerghbovrhood of
vi. Then w 1s the absorbing point of vearhaboliiy.
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Proof. We consider an arbitrary initial condition y:(z) € li’-}(ﬂ,).
Letting the trajeetory of system (5.1). (5.12) to go out y; and applying
thearem 5.2 we will be found afier some time on & trajectory belonging to
the attractor A of system (5.1). (5.13). By the assumption of Proposition
5.1 after an other period of time a point inoving alang our trajectory will
be close to y; enough for application of Theorem 5.3. At this moment we
apply Theorem 5.3.0

Propositiox 5.2, Let y(r) be o solution of (3.6}, (3.9) with the
boundary conditions oy, aa satisfying mequaltty oy > ava. Then §(z) is an
absorbing point of reachadility for the Burgers equation uith the baundaery
control.

Proof. Let a; > a» but ay = ay is thus far siall that the minimal
eigenvalue Ay of the spectral problem written below (3.19) is positive. Then
the proof of Theorem 3.1 is true. Suppose that aj > a3 do not satisfy this
assumption but the boundary condition & = §(0), az = $(a) where a; >
3, > ag satisfy it. Then by Theorem 3.1 the controlled trajectory y(t, )
going out an arbitrary initiai condition y:(z) can reach at a finite time
moment Ty the solution y:(z) of (3.8) satisfving the boundary conditions:
$(0) = 3., mla) = ay if we would choose the appropriate boundary
control. Thus. y7y.,x) = §i(z). Let gn(z) be the solution of (3.8) with
the boundary conditions #{0} = J2 = 81 + <. y2{a) = oz where ¢ > 0 is
small encugh. Applyving Theorem 5.1 we can prolong the solution y(t,r)
behind Z-{t > T} such that at a time moment 15 > 1} the equality
W T, 2) = yo(2) holds. If 5:(0) = 9, > a6, then the proof js finished {we
can take Jo = az) Il §(0) = J2 < a1 we consider the solution ya(r)
of {3.8) with y3(0) = 32+ ¢ (¢ > 0 is small). yala) = ao and repeat the
previous argnments. After several steps we will prove the Propesition.

REMARK 5.1. The methods of Sections f,5 are general. Besides the
Navier-Stokes systen: for which, surely. these methods can be generulized,
there are a number of other systems in mathematical physics possessing
nontriviel atlraclors vn which a confrol by means of boundary values 1s
tnteresting.

In connection with control of moticn on attracters, general problem ou
attractor’s structure means very important and interesting,
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A PREHISTORY OF FLOW CONTROL AND
OPTIMIZATION

MAX D. GUNZPVRGER®

1. Intraduction. Flow control and optimizatios is an ancient prac.
tice of man. For exampie any dam, sluice, canal, levee, irrigation ditch,
valve. duct, pipe, pump, hose, vane etc., is an exercise in flow control or
oplitnization, i.e.. and attempt to

control the mechanical state, e.g., the rate and direction of
molion, and/or the thermodynamie slale. ¢.g. the temper-
ature. of a fuid in order 1o achieve a desseed purpose.
kven the animal kingdem has examples, e.g.. beaver dams. of attempts at
flow control.

However, until recent’y, flow control and optimization has been. for the
most part, effected without the use of sophisticated fluid models and/or
without the use of sophisticated optimization techniques. Ia spite of thie,
substantial successes have heen achicved. On the other hand, sophisti-
cared current and future uses of flow controls require a more systematic
approach to these problems, and in particular, will require the use of so-
phisticated optimization technioues in conjunction with sophisticated flow
models. Even the popular litcrature has recognized this need. For example,
the January 1993 issuc of Pepular Mechanines discusses the use injection
of fluid near the nose of an aircraft in order to steer the aireraft in stall
environments. Ancther example is the March 1, 1993 issue of Aviation
Week & Space Techrology in which the need for flow control theories in-
volving thonsands of degrees ot freedom to replace current ones involving
10 degrees of freedom s discussed.

Here, our main goal s to briefly review same of the past successes i
flow control and optimization We also discuss why the time is now right
for the incorperation of soplusticated fluid models and sophisticated opti-
mization technigues into practical flow contrel and optimization method-
ey, Indeed, the purpose of this volame and of the merting from which
it emac.~tes is 1o review some of the recent mathematical and engineering
developinen:: in this regard. We close with some reniiains avonat the strue-
ture of tlow contrul s - timizntion problems. and with some examples
of interesting objeztive functicnals and control mechanizms

Lest one thinks that flow eontrol and optimization is a recent quest
among mathematicians, «ngincer:, and scientists, consider the following
drag minimization prehlem:

what is tAe shape that a surface of revolution mowing af
constant velocity an the dircetion of its exis must have 1f of

* Departmentof Mathematice and Tnterdisciplinars Center for Apphied Mathematice,
Virginia [ech, Rlackebarg, VA J4081-0331,
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is {o offer the leasi resistance tfo the motion?
The body is sketched in Figure L1,

¥(x)

TN
~___

Fia. 1.1, 4 lody of revalation

After making cerfain assumptions about the flow, one can show this
problem is equivalent te finding a ¢{z), £y < 1 € 9, that minimizes

ges _ Y P
\!{Sf}“[! m}.&{y‘,{r}}:} ﬁ‘}f.

This is the firsf significant problem in the calnlus of varishions and was
posed {16R7) and solved (1694) by Newfon!

2. Flow control without Huids. By flow controf without furds we
mean attempts to control a fluid flow and siate without the utilization of
soplisticated fluid models involving partial differential equations such as
the Navier-Stokes equations, or the Euler equations. or the potential flow
equations, elc., For the examples of dams. pumps. etc.. mentioned above,
flow control is effected without any attempt 1o solve such fluid equations.

An example ol a very successful application of flow control without
an accurate modeling of the fluid is the design of the heating ind cooling
system i ¢ burlding. Here, one designs a system of ducts, fans, registers,
vanes, sensors, actuators, heat pumps, furnaces, air conditioners. ete | so
that the temperature in a building is close to a uniform, comfortahle value
and so that the heating/cooling hill is as low as possihle. In the design
process, the air flow is not eompnted using sophisticated miodels involving
partial differential equations. Hather, one shply uses empirical rules for
determining the flow rates neeessary for earrying out the design. One also
assumes that pumps, fans, furnaces, ete., move the air at constant flow
rates through the ducts, registers. ete. Heat and temperature losses are
ilso determined in an empirical tanper,

Perhnps the most spectacular exzuple of success{ul flow control with-
ont. finids is that of arredyvemic controls. Here. one delermines a position
of the rudder, wing flaps, elevators. airelons, throttle, ele., so that an air-
eraft executes a desired maneuver. To some extent, all modern airceafl
employ automatic confrols, fe. controls thar are not defermined by the
pilot, but perhaps by a computer. The extreme example in this regard iy
the Grumman X-29 airplanc which uses such antomatic enntrol to keep the
plane from going “unstable”. Typically, aerodynamic contrals are set by
solving a small system of ordinary differential equations. The influence of
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the fluid flow on the controls appears as functions or constants in the dif-
ferential equations. These functions and constants are determined a priori.
very often using an cmpirical process. When the control settings ace being
determined, no attempt is made to solve partial differential equaticns for
the fliud flow.

lu these and numerous other examples, no attempts are made to em-
ploy sophisticated fluid modcls such as those involving partial differential
equations. 'T'he flow of the fluid is modeled by a few constants, or at best
functions of time, appearing in systems of ordinary differential equations
that determine the optimal control settings, or by using a Bernoulli equa-
tion to relate mass flow and pressure, or, most often, by assuming coustant
mass flow rates. In this sense, one may view these efforts as constituting
flow control witiiout fluids.

3. Flow optimization without optimization. By flow opfemiza-
{ron usthout optimrzation we mean attempts to control a fluid flow and
state in order to mert a desired objective without the utilization of so-
phisticated optimnization techniques such as Lagrange multiplier methods,
quasi-Newton methods. ete. Tn many cases. including the ones described
below. although sophisticated optimization algorithms are not involved, a
detailed description of the fluid motion and state is employed. The latter
are determined by experiinental measurements, or analytical sclutions, or
computational simulations.

Tor the first example of flow optimization without optimization, we
consider the large body of experimental work and somewhat smaller body
of analytical work on boundary layer control. Heure, the size, shape, forma-
tion, etc., of a boundary layer is to »e affected, e.g., controlled, in order to
meet a desired objective. Control mechanisms that have been considered
are the movement of solid walls such as for a rotating cylinder, the injec-
tion or suction of fluid through orifices, shape variations such as camber,
thickness. and flaps adjustments, ete. Objectives (hat have been considered
are maximizing lift, minimizing drag, preventing separation, preveuting or
facilitating transition to turbulence, ete.

For examiple, consider the following question. Can the dray on a body
be lowered Ly the suction of fluid through a narrow slt? Specifically,
consider the sketeh in Fignre 3.4, Here. we have a cylinder in a uniform
strearn and we have fluid sucked through a slit on the back-side of the
cylinder. This problem was the subject of Prandul’s first paper in 1904 {3}!
What Prandul fouad. through experimentation, is that indeed the drag on
the cylinder could be reduced by sucking fluid out through the slic.

Ancther example is attempts towards the canecllation of wave drag.
The Busemann biplane {1830} was an attempt to design a wing shape in
order to reduce wave or shock drag: see Figure 3.2, The left-hand figure
shows the shock waves under design conditions: the wedge angles are ex-
actly those needed (o cancel out the out-going waves. The right-hand figure
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Fi6. 3.1, A cylinder i1 uniform fAow with swclion throvek o sl

show off-design conditians for which the out-going waves are not completely
cancelled.

gp-e

Fus. 3.2, The RBuseman biplans

More recently. Garabedian and his co-workers 1], and others, have de-
signed transonic airfoil shapes that penerate shock-free flows. Again, nnder
design conditions, there is no shock present at the back of the supersonic
bubble on the upper side of the airfoil: at off-design conditions, a weak
shock is present there.

In these examples, and many others as well. sophisticated flow models
were used in experiments, analyses, or computations of optimal designs.
However, no attempt was made to employ sophisticated eptimization algo-
rithms. Solutions were obtained by doing experiments ur solving equations
for a (small) set of configurations. and then compariug results. In essence,
optimization, e.g., minimization, is effected by variants of the following &l
gorithm {which for simplicity, we describe in the case of having only one
design parmeter}):

Given a functional f{p} to be minimized with respect to the parameter
P:
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1.ckoose n distinet values {py.pa,....pn} of the parameter;

2.evaluate f(p,) fori=1,...,n; and

3.examine theset {f(p1). ... f(pn)} and choose a value p; such that f(p;) <
fps)fori=1,...,n.

For example, plot the values of f(p;), i = 1,...,n, as in Figure 3.3, and
then choose the parameter that yields the minimal value of f among the
plotted values. Oue may view such efforts as flow optimization without
optimization.

f(p)

" i
T

N "
7 ™

P P: l;a E;4 Ps Ps

¥1G. 3.3. Graphteal minimization of a functional

4. Flow control without ohjectives. By flow control withoul ob-
jectives we mean attempts Lo use control and optimization ideas in a fluids
setting. not to have the fluid flow meet some desired objective, but in order
to meet some independent ohjective.

As an example. we consider the work reported in {2] and related papers
on the use of optimization ideas to ganerate incompressible computational
Aued dynamics algorithms. The connection between a CFD algorithin and
flow (ntimization is made as follows. If (u.p) is a solution of the Navier-
Stokes eyuations

~-vAu+4+u-Vu+Vp=f inQ.

Y.ou=0 in02,
and

u=g ondQ,
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in some region §1, then u minimizes the functional
Jw)=% [ v an
51

over a suitable function class, where, for given v. {#,£) is a solution of the
Stokes problem

~vAP +TE=—vAv+v - Vv-f inQ,

T @®=0 inQ2,

and
& =0 ondh.
Moreover, if u is minimizer of 7, then
$=0, £=-p. and Jul=0.

The problem of minimizing 7 can be solved by a conjugate gradient algzo
rithm having the property that at each iteration only a sequence of Stokes
solves is required. Thus, and efficient CFD algorithin is generated. How-
ever, note that no intrinsic property of the flow is being optimized; hencr,
in this sense. we have flow ronfrol without any objective.

5. Timeliness of low control problams. At this point i

to ask:

can ane pul together sophisticated flow modrels and sophis-

ticated oplimiration technigues in order to meel desired

objectives?
An affirmative answer to this question depends cn being able to obtain a
like answer to the next question:

has flow control and optimization become a subject ready

for rigourous mathemalical trealment and syptematic com-

pulational resolution using sophestreated fluid models and

sophistiveted oplumization algonithms?
An sffinmative answer to the second question follows from the observations
that there has recently been significant advances in the fheory of partial
differentral equations for the equations of fluid mechanics, especially for the
Navier-Stokes equations for incompressible flows, and there have also been
significant advances in efficient and robust algordhms for computational
Buid dynamics for all types of flow regimes that enable the analyeis snd
approximation of flow control problems.
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§. The structure of flow control probiems. The structure of a
flow control or optimization problem is similar to that of any such problem.
First, one has an

objective, i.e., a reason why one wants to contro] the flow.
There are numerous objectives of interest in applications, e.g., flow match-
ing, drag minimization, lift enhancement, preventing separation, preventing
transition to turbulence. deterring temperature variations, enhancing mix-
ing, deterring mixing, etc. Mathematically, such an objective is expressed
as a cost functional.

Next. one has

constrainis that inust be imposed on candidate optimizers
that determine what type of flow one is interested in.

One must decide what type of fluid model is adequate for the flows one
is interested in, i.e., is ene satified with assuming the flow is a potential flew,
an invsicid flow. a viscous flow. ar incompressible flow. a compressible flow,
a stationary flow. a timc-dependent flow, ete. Mathematically, the type of
flow is expressed in terms of a specific set of partial differential equations.

Finally, on has

controls or design parmeters at one'’s disposal in order to

meet the objective.
One can have boundory value controls such as injection or suction of fluid
and heating or cooling or temperature controls, etc.; one could have dis-
tributed controls such as heat sources or magnetic fields, ete.; or, one could
have shape conlrols such as leading or trailing edge flaps. movable walls,
rudders, propeller pitch, surface ronghness. or domain design, etc. Mathe-
matically, controls are expressed in terms of unknoun data in the problem
specification.

Thus, the mathematical specification of a flow control or optimization
problem involves:

stale vartables
6 =u. p T ¢ etc.. the velocity, pressure, tempera-
ture, internal energy, etc.;
control variables or design parameters
¢, e.g., the velacity on the boundary, the heat flux on
the boundaty. the shape of the houndary, etc.;
an objective or cost funclional
J(é,7). eg. drag. temperature gradient. ete.
conslrainls

Flo.g9)=0, ie,flow cquations.
The flow control problem is then simply stated as the following minimiza.
tion problem:

find controls g and states ¢ such that J(é. ¢) is minimnized,

subject to Fg,9) =0
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The functionals to be minimized do not usually explicitly depend on
the controls or design parameters; this may result in unbounded optimal
controls. Thus, one must limit the size of the control. There are two ways
to da this. One may place somie a priori constraints on the size of admissible
contrals so that one locks for optimal controls within a bounded set, e.g.,
one could look for optimal controls ¢ such that, for some suitable norm,

loll < & .

A secund method for Himiting the size of the control is to penalize the ob-
jective functional with some norm of the control, i.c., instead of minimizing
& functional 7{¢) one could minimize

J(8) +dlgll”.

By making judicious choices for the parameters ¢ and 8 and for the norm
on g, one may at the same time effectively limit the size of the control and
ohtain states such rhat the value of 7 is small.

7. Sample objectives. We now give a short sample of the many
possible objectives that arise in praetical flow control and optimization
problems. We emphasize that there are many other.useful and interesting
ohjective functionals that have or should be considered.

Flow tracking. Let u denote the velocity field and Uy denote a pre-
scribed desired velocity ficld. We want to control the flow g0 that u is
“close” tn Uy Tt i= natural to minimize some norm of the difference be-
tween u and Uy, For example, one choice that has been considered is to
minimize

Ju) = -1-/ m = Ut da,
4Jn

where {2 denotes the How domain. {The particular choice of the L norm is
governed by technical considerations.} One can also try to match the fluw
on part of the flow domain. or even on some surface. For example, one may
minimize ,
Juj= < | ju-Uydr,
4 Jr,

where Ty is some plane in the flow field,

Viscous drag minimization. Aa hnportant objoctive in many applica-

tions is the minimization of drag. For some incompressible flows, the drag
on a body can be computed from the integral of the dissipation function

Jou) =4 /ﬂ (T + (Fu) d0.

where g denotes the viscosity coeflicient. Fhus, H one wishes ta minimize
the drag on a bady, one mierely minimizes the above funetional.
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Avwoiding hot spots. In many applications it is desirable to avoid “hot
spots” along bounding surfaces, i.e., places where temperature peaks oceur,
since often such phenomena lead to meltdown or to flexural failures. Such
difficultics may be avoided by minimizing the functional

J(Ty= | |v,Tidr,
re

whare T denotee the temperature, ¥V, the surface gradient. and Iy the
portion of the boundary along which one would like to avoid the above
problems. Another candidate functional to be minimized is given by

() = / T = Ty dr,
rT

where T, denotes a desired temperature distribution.

Well-mixed flows. Onc common objective is to have two {or more) flu-
ids become well-mixed at, for example, the outflow of some flow region.
At the inflow, perhaps. the fluids are not well- mixed: we could have an air
flow with fuel being injected through an corifice. By controlling the flow,
we would like, by the time the fluids reach the outflow region. not to have
high concentrations of cither fluid present. One way to achieve this is to
minimize

I = / IV el dT
l"o

¢ denotes the mass fracrion of fucl. V, the surface gradient, and Iy the
outflow boundary. By minimizing the ahove functional we achieve a quasi-
uniform concentration distribution at the outflow boundary.

Poorly mixed lows, In other applications one wants two or more fluids
to mix as little as possible. For example, one would like one fluid to remain
confined to a certain portion of the flow demain, and not penetrate into
other portions of the flow demain. I one wants to exclude a particular
species from the portion Qg of the flow domain Q we could. in this case.
achieve our abjective ny minimizing

J(e) = lxell.

where y denotes the characteristic function for Q.

8. Sample control mecahnisms and design parameters, We now
give a short cample of the many control mechanisms that atise in practical
flow control and optimization problems. Again. we emphasize that there
arc many other useful and interesting control mecahnisms that have or
should be considered. :
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Velocity along portions of the boundary. A very much used mechanism
of control is to inject or suck fluid through orifices along bounding surfaces.
Thus, if I, denotes the portion of the boundary covered by the orifices, we
_would seck a control g such that one of the functionals is minimized, subject
to the appropriate flow equations, and also

u=g onl,.

Temperature and heating controls. Another cominon control mecha-
nisi is to adjust the temperature, or even more often, the heat flux, along
portions of the boundary of the flow domain in order to achieve one of
the desired objectives. Within this class of controls we find “heating” and
“caoling” controls. Tor example, one could seek a contral ¢ such that ene
of the functionals is minimized, subject to the appropriate flow equations,
and also

ar _ onl

&n q T-

where Tz denctes the portion of the boundary along which one allows the
contral to act and §/8u denotes the normal derivative at the boundary.

Distributed controls. One could try to effect conirol through the hody
forer in rthe Navier-Stokes equation. Thus, one would seek a contral, drfined
on the flow demain Q or ra & portion of Q, such that some functional s
pinimized and subject to the appropriate fow equations. Physically, cne
way to effect such coutrol is by a magnetic field acting ou an wnized Auid
or an electrically conducting fluid. Another distributed control of intersst
is a heat source in the energy equation. Physically, one way 1o effect such a
control is through radiation mechanisins, or through a tarzeted laser beuin.

Shape controls. The control mechanisis discussed so far are enflec
vively known as value controls; this refers to the fact that we 11y to effect
control throngh the adjustment of the values of the data of the problem.
Another class of controls are known collectively ac shapr ronfrels: in this
case control is effected by +djusting the shape of the flow dor sin. The
shape of the flow domain may be changed in many ways. For example. one
conld use leading and/or trailing edge Raps, or movable walls. or rudders,
or propeller pitch. A related problem is the optimal design problem. Here,
we want to choose a flow domain, e.g.. the exterior of an airfoil, so that
some ohjective is achivved. Of course, the Row domain is determived by
its houndary, e.g.. the airfoil itsclf.
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MATHEMATICAL ISSUES IN OPTIMAL DESIGN OF A
VAPOR TRANSPORT REACTOR

KAZUFUMLE ITO®, IITEN T. TRAN® | AND JEFFERY 8. 8CROGGS*

Abstract. lu this paper the optimal design of a vartical reactor for growing crystals
and epitaxial luyers by physival vapor transport technique it disraseed. The transport
phenomena involved in the deposition process is modeled by the gasdynamics equations
and chemical kinematios. The problem s formulated as a shaps optimization with re-
spect Lo the geomenry of the reactor and an optimal contral problem by controlling
the wall temperature. The material and shaps derivatives of solutions te the so-called
Houssinesq approximation are derived. Optimality condition and a numerkcal optimica
tion method hased on the sugmentcd Lugrangion nicthod are discussed for the boundary
control of the Boussinusg flow. A nwmerical approximation bassd on the Jacohi poly-
nomials for the axi svimmetric flow is develaped alang with a discussion of an iterative
method based un GMRES for selving the resulting system of nonlinesr equations.

1. Introduction. In this paper we discuss the mathematical issues
involved in designing an optimel reactor for growing ¢rystals and epitaxial
layers by vapor transport techniques. The application of these materials
in modern computers, communication systems, and other electronic and
optical devices demand precicely controlled electrical and optical proper-
ties, and henee extremely high purity and uniformity. Qur design effort is
focused on the Scholz grometry depicted in Figure 1. The source material
aml the growing crystal are scaled in 2 fused silica ampoule that is heated
by an isothermal furnace liner at its outer cylindrical surface. The sub-
strate {the single erystal} is located on a fused silica window (W) which is
cooled by a jet of helium gas from the outer surface. HPVT processes are
buved on physieal vapor transport and can be described very roughly as
procecding via evaporation at the polyerystalline source and condensation
#t the surface of the cooler substrate,

Our cffort on mathematical modeling of transport and growth process
in the high pressure vapor transport {HHPVT) arises from collaboration
with Klans Bachmann in a joint project between the Center for Research
in Scientific Computing and the Material Research Lsboratory, both at
North Carolina State University. Preliminary studies in the laboratory have
shown that crysrals grown by HPVT of Zn(Gel'y exhibit superior properties
than those grown by the existing techniques. We have begun to explore
the conditions that favor these properties by modeling a vertical reactor
along with a numerical simulation of 2-D axi-symmetric steady flow of
& homogencous P gas at | and 10 atmr pressure using the Bonssinesq
equation [TSB]. Numerical simulations were performed in [TBS] to study
the flow dynamics and temperature distribution inside the reactor chamber
and to illusirate the feasibility of an optimal reactor design stndy,

* Center for Hesearch in Scientifier Computation, North Carolina State University,
Raleigh. North Carolina 27695%-8205,

187




198  KAZUFUMI ITO, HIEN T. TRAN. AND JEFFERY §. SCROGGS

Our study is concerned with the transport mechanisms inside the re-
actor. We quantify the uniformity of the epitaxial layer and formulate the
optimization problems in terms of the following performance indices:

(1) the variation of the temperature of the substrate
- less variation should increase uniformity and purity,

{2) variations in the relative fluxes of reactants
- this detcrmines the stoichiometry which must be controlled to
- within 1 percent,

(3) the net flux of reactants onto the substrate
- this determines the growrh rate,

{4) Absence of lacal recirculation flow,

The possible control variables consist of the shape of the reactor, aspect
ratio, total pressure. orientation of the reuctor with respect to the gravity
veetor, wall temperature distribution.

The mathematical model for the transport phenomena involved in
the deposition process involves the gasdynainics equations (conservation
of mass, momentum and energy) and the conservation of species equation
for the reactants: i.e.,

7

i
Ep+V-(m/):0

p(-gf-u-.- w-Vu)+Cp=p(du+ E V(¥ -u)) - paes
(L1) )
pC, (-(%T%-w\’T)-:—p(V u) =V (kYY) + 2 (ei5 ~ '};ftk)2~

p(}%c-_‘ +u-Ve,)= V- (pD(Ve, + 0 ¢;ViogT)) + 7

where ¢; ; = {;(g'—;f + -g—i‘-;), the state function (p, u, T.¢; ) includes the den-
sity p{t, z), the mass-average velocity u(t,z) € K, the temperature T(L, &),
and the mass fractions ¢ = (¢;. - -, ¢m) of each specie ¢ with 3,_, ¢; = 1.
In the equation r; is the reaction rate of the i-th specie, « i» the thermal
diffusion factor (Soret coeflicient), D is the solutal diffusivity, k is thermal
diffusivity, and C, is the specific heat. We assume the perfect gas law for
all species; i.e..

- LT
(1.2) vi= m

where Ry is the universal gas Jaw constant and m; is the molecular weight
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of the i-th specie. We assume that the veloacity field satisfies the non-
slip boundary condition and the temperature distribution is given at the
boundary T'; te.,

(L y=0 and I'=9 on T

in the case of binary {carrier and reactant) gases we may consider the fol
lowing boundary condition for the concentration, which models the surface
reactions and deposition along the substrate [YHC]

{1.‘;:’!} - {V{'; +0 ?{V{é’}gT} -, = 0

Hwhere n is the outward normal vector at the boundary sud ¢ is the
Damkohler number. On the wall we assume

{145 n-{Veitae,ViegT) =40

and at the source the concent ration ¢; is assutlied to be given.

The paper is organized as follows. In §2 existeuce of solutions to the
steady problem is discussed. In 33 a numerical method based on Jacohi-
polvnomial based spectral {Lau-} approximation is developed for the axi-
symnmetrie solution fo the Boussinesqg equation. An iterative method based
on a preconditioned projection method and GMRES for solving the re
sulting systern of nonlinear equations is developed. In §4 the shape opti-
mization for the Boussinesq flow 1= formulated and the sensitivity equation
based on the shape derivative is dorived. In §5 the optimal control for the
Boussinesq flow ic discussed and the first order and second order optimal
ity condition is established. A solution techuique based on the augmented
Lagrangian method with second order update s described.

2. Existence of solutions. In this section we discuss the exisdence
of solntions to the steady problem. For simplicity of our discussions we
consider the case when no reaction is taking place (ie, involving only a
single carrier gas). Then it is not difficult to show that f 77 = #; (a
constant}, then

N amo Pel e el g wd pe B2

is # solution to the steady equation of {1.1) where py = 3;:’" To. Then it
is shown in {MN] that there exists a global unique {classical} solution to
{1.1) provided that the initial condition is sufficiently clese o (p.u. T} in

HY QY.
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The steady equation can be writien as

vouz =Ly

(22) ~p(Au+%V\"~u)+Vp=—py¢3-pvl~Vu

~C kST = g (Du) = p¥ - u=-Cipu-CT.

We will show the existenee of solutiors in a neighhorhood of (p.u. T) by
applying the implicit functicn theory to (2.2} Consider the state space:
{pu, THe Whr() = W rig¥ x I 1) for # > 2. Assame that r > 4,
‘LThen since 1577(Q) is cantinuously embedded into L™ (1) the pight hand
side of (2.2) helongs to L7 x (L™ x L™%. "Then it follows from [Gi] that
the hinear equation (2 2) has a unique solution (v.p. 1) = S(p.u.T) in
() < L7(2 W2 T(Q). given the right hand sidein L7 x (1713 L™/2.
However from the perfeet gas law

b m

we tnust have p € I1°1°(Q), ‘That is. we have a pismateh of the regnlarity
for the pressure p. In order to overcome this difficul'y we assurie a bulk
viscosity assumption [Sch)

(2.3) Jay, = p - :—ﬂv-n and  pen = %‘-‘ﬁ]'
* t

where pyy is the thesmedy nasnic pressuee. Nate that for the incompressible
flow the thermodynaiic pressure equale te: the mechanizcal pressure and at
the inviscid Lt {assuming surch a limit exists) (2.3) reduces to the perfect
gas law.

From [FM] we have the vectur field decomposition of L7{2)3: that is.

IR = S, (M 3 GAQ)

where $:.{)) is the elosure of O soalenoidal (T - u = Q) functions with
compact support in £ with respect to L7{QQ) topology and G-(f2) 1s the
gradicnt field = {To: 6 € W ()}, Supposs = v+ u with v € 5:(Q)
and w € G.(§) then the left hand side of the s~cond equation in (2.2) can
be writlen as

4
~pdv+Tip-- -,-‘-p'\" - u)
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The linearized equation of (2.2) - (2.3) at (p,4,T', p) is given by

AT ﬁig — r
AT 1 Rode =FRel

AU - Y ee ) -TP i g =R ey
3
2.4)
T (kT 4T -U=Fsel™? and O =

P- —;:T i Tﬁ +00) = Fye Vim,

iien-:e bx the implicit funciiu:; theory i (2. 4} has a unique solution (TL 1. 6,
P} S X = W (WP 12 2072 5 I that continuonsly éepeads on

_{ajahjger—amqyﬁxf”xwﬁswaﬁ = the
trace of W7 on I', then there is a unique continuous solution mapping
of equaticn (2.2} — {2 3) defined in a neighborhood Vol Thin T V —
{p,u.T.pre X.

Assume the operator @ defined by QU = V.17 = g3 .U on W17 is
surjective. The first two equations of {2.4) Las a unique selution ({7, P) €
{1 y® x L7, where PP is uniquely determined by the condition that the
total therusal pressure. = {py . 1)a. it a constant. Moreover if I/ = V 4+ W
with V' € 5.48) and W € G.{}) then the second equation of (2.4) is
written as

(2.5} -pii’+?{}’--§;x?-f?}= Fo=Hgea

in the sense of distributions since gradd = Agrad. Since divA = Adiv in
the sense of distributioas it thus follows from the vecter field decomposition
of (L7)® that PP — 34~ - U € L" is continnonsly depend on T and F; €
{273, Then the third equation has a unique solution © € W27/2 3c 5
continuous function of ' € (WH7)3. Thus, the last cquation of {2.4) can
be equivalently written as

{(2.6) R"g‘* N+¥(M=F in WL

where ¥ ¢ L{F1", Hf""} is defined by the solution {{7.6, P) to the first
three equation of {2.4), described as above and is compact sinre W7 s
compactly embedded into L7, It then follows from the Riesz-Shauder the-
ory that if - 3;’;5-“ is not an eigenvalue of the linear operator ¥ then {2.6) has
a unique solution 11 € WU+ that in turn hnplies {2.4) has 2 unique solution.
The range conditions on the operators @, ¥, which depend continuously
on the total pressure. are generically satisfled.

3. Axi.symmetric low and Jacobi polynomial based speetral
method. In this cretion we consider a numerical approximation of the
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axi-symmetric flow of a homogeneous carrier gas. The so-called Boussinesq
approximation of (1.1) assumes that the density p is eonstant. Thus, from
the suass conservation we have V-u = 0. The buoyaney foree in the presence
of a pravitational force is modeled by

(l-———')

which is obtained by the Taylor expansion of the perfect gas law (1.2): i.e.,

P 170 _T-6,
)
(]

where the pressure dependent term is neglected when no reaction is taking
place. This results in

p~pall +——

po(g;u-t-u-Vu)-f Vp=pAu+ -Z—O-(T-Oo)gra.

3.1} C.ou=0, ur=0,

nCe (5 mu YT)=V.(kVI). Tir=4.

Furthermore, we consider the axi-symunetric flow: ie., 7 = (u cosd, usind, w)
where u, w, the radial and vertical component of the velocity field @, sat-
isfies

Gu Au <'?p

u
pﬁ(6t+u-—+ )+ =p(dru==3)

duw Hu du.  Gp

il — | — — =z A & T~ 0.
pn(at +u 5 +u 63)+ R pA 4+ o (T —85)y
(3.2) Cro () = %g- (ru)+ Qlﬁ =0
GT 6[

. 4T
('”p:(c‘h +u 0 =—) = kAT
v, u=0 T=6 onT.

Here. A,.¢ = é(r ~¢) + 070 The domain Q,, can be parameterized by

(3.3) Qo ={(r:): 0<r<Rand 0 <z < a(r)}

where we assume that @ € C*(0, ) is positive. Note the singularity ap-
pearing in the cperator A- is removable in the sense that

. N o do Oy . c?r‘u/
(3.4) '/nAréa,.rdrd.-/;'(ar T =) rdrd:
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for ¢ € CHQ,) and ¢r = 0. Similarly,
8 8
(3.5) - j V.- (u.w)qrdrdzr = f (=2 + w2y rdrd:
0 a O '

for ¢ € CY(,). Define the Hilbert spaces H = L3(Q.rdrdz) and V =
{6€il: V.-5& H and ¢op = 0}. Then the right hand side of (3.4) defines
a hounded, symmetric, coercive sesquiliner form g on V x V. Thus A, with
dom(A.} = {6 € V : A.d € H} is a self-adjoint operator on H (see, [Ta)).
From (3.5} =¥, = " with dom{¥,-} = V. Hence the wenk or variational
formulation of {3.2) is given by

dat .
po i )+ (). 60) # 0, (). €) < 0

Jdw(t)y . . .
f‘ﬁ{f }-ﬁé}’ v+ 5:-3{{{{, 3‘}:ﬁ}} + Gi?}{t}. {;} =0
{2.6)

f) .
o (=== n} 4 bal(w.w, Tl + ka(Tit),p) =0
T (u(n)u(tii= 0. (u(f).o{t). Tit) € V3 +{0.0,6),
for all (6, ¢, 9} € V7 satisfying ¥, - (¢. ¢} = 0. The pressure dependent

term is eliminated by the fact that (Vp, (¢. ¢)) = 0. Here the sesquilinear
forina. on ¥ x VVis defined by

- i
{3.7) a,{dy,02) = gy, 62) +f T0192 drd:
[F IR
and the tri-linear forms by, by and &5 are defined by

bi{{u.w), é) = / {3{§ (n® +w?)) = wewrd - (u.wVordrdz
Jn gr 2
4.1 ., 3
{1.8} fal{u, vl V)= / {—é:{§ (1 4 w4 acurl - {u, v}y edrds
9 ~

ba{iu, v, Thn)= é [ Hu w0} - ¥T =V, {in a)T ) iyrdrd: ’

&= Jf}

~ 15 whe B3 o B Su
for &, 1, 52V, where curl{u, w) = 22 = 5% Note that

Bi({v. w)h u}+ baf{u. )l = ; / Tt 4 «?) (v w)rdrdz = 0
1}

and

vu} - ST =%, {u,ujl)
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for (u,w) € V2 satisfying V. - (u, u) =
Consider a boundary value problem

1d, d m?
— ] — — = N =
(3.9) - dr(r dru(r))+ = u(r)= fir). »(R)=0
in order to present the basic idea of the tan-method based on Jacobi-
polyniomials. A weak (or variational) form is given by

m?
(3.10) tr(u.g,'.)=/n (%%-";+ un.)rdr../ fordr,

for all ¥ € CY(0, R) with ¥{0) = ¢{(R) = 0. Let W be the completion of
C*(0, R) with y(R) = 0 with respect to the norm defined by \/e(-.-); i,
if m > 0 then

W= {0 € AC1.(0. R) : {R) = 0 and r“":r s, 7 Ve e MO R

Then o defines a hounded coercive sesquilinear form on W x W and thus
for f € W* there exists a unique v € W that satisfies (3.10). Tau-
approximation is based on representing an approximate solution u” of u
by

" ‘Zuk‘]p (2r - R)/R)

where Ji(-) is the k., acobi polynomial and satisfies the orthogonality

[CHQZ]:
/: (i)l + 2)de=0. k#1
Then u" € 2% x W satisfies
(3.11) / (-u —d*:—zu v 1dr_/ (P2 f)irdr

for all v» € 2" x W, where Z™ is the space of polynamials of degree at
most n on (0, R) and P"? is the orthogonal projection of L¥(0, R, rdr)
onto Z"~?, Note that u” € Z” x W implies «"(0) = «™(R} = 0 and such
conditions are forced on the approximate solution v {not on cach element).
The projection P"~? rcflects the fact that the dimension of the subspace
Z" x W is n~ 1. Using the standard argument {CNIQZ]. one can show that

Ju" ~ uiw — 0 as n -+ .
Similarly, the above outlined method can be applied to (3.6): i.e.. an
approximate solution (u",w™, T™) is represented as

iy 13

w"(0= YN wnilt) Je((2r = RY/ R)La((2z ~ o(r))/a(r))

E=0i=n
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and similarly for v and 7" where Li(-) is the Legendre polynomial of
degree I [CHQZ]. The divergence free condition ¥, - {u{t}, u{f}} = 0 is
approximated by

(Fr(u"(1). w™ (1)), p)r = (2 (D), u™(1)), VB)r =0 foralipe 2™ 73m272

where (-,-). denates the inner product of H = L3(Q. rdrd:) and

By N>

7= (o= 3 b1 (2 = RIR)LA(2: - alr)/a(r))}.

k=l i=0

Let P" be the arthagonal projection of H anto Z"1=4"2=2 and W™ be the
divergenes free subspace of (27?2 A V)| defined by

WP = {(ut.wm) € (2™ " x V)2 (B (t).w(1)). Tp)r = 0
(3.12)
for allpg Zni-¥n%-2}

Then (u"(1). w™(1)) € W™ and T7(t) € Z™ ™5 1\ 4 0 satisfies

m P du {f}, ) BT w™ Y o+ ol (W7 (1). ) = 0
dt !
313 PPl ), e e+ ) - 0
dIn{t .
Cipo {{F”-—-{—}, 7+ bs((6” 0 1) g )+ ka(F(tn =0
dt :

for all {&,¢) € W™ and n € 27+ x V. Here, the approximate fomms
57, 87 and 83 arc defined by

(3.14) , ‘

b {(u,w),0) = (L P07 4+ w”)) - PP{{PPuicurl - (u ). &),

{{u,u)vl= {f{% P 07+ PP w el - (. ud), 64
Bt w, T = § (0 w) - ST = ({0} ¥, T
The sesquilinear forms ¢%, o} are given by
a™(w, ¥) = (P"Vu, Vo),
(3.15)
g {u, vy =a"{u,¢) +{P"(ufr). &/

Note that the above approximation is erergy conservative in the sense that

T{a” 2", v )+ 050", v L " N =0 and M. uw" I7LT”Y=0)
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for (u* u") € W™ and T € ZM:72,

Next, we discuss an iterative method based on the Generalized Mini-
mum Residual Method (GMRES) [SS] and the pre-conditioned projection
method [Gi},[DI] for solving the steady problem of {3.12) - (3.13). First
note that Z7+"2 N1 1" is isomorphic to Z*1=272=2_ Consider the Stokes
projection Ps onto the divergence free subspace W™, defined by

(3.16) A’z 4+ B"p=f and (B*)r=0

where A™, D™ is the matrix representation of the (au-approximation of
-A+d 0 £
and
: a

" ny-2ny-2

Pf=) Y weadili2r = RY/RLi((22 = oi{r))falr)).

k=0l

respectively and

That is, in order to calculate the Stakes projection P, onto W7 we require
a solution to the (approximate) Stukes equation (3.16). An alternative and
less expensive projection is the La—projection:

Piy= 1= BB By (B

which corresponds 1o {3.16) where A™ is replaced by 1. Thus the precon
ditioned projection based on the La— projection Py, is defined by

Py= PLJ(A")":P[_:.

"The preconditioning for the thermal equation may be given by the ellip
tic pre-conditioner {—A7)"*. However. the elliptic preconditioner is less
effective for the convective dominant flow (i.e.. high density or high pres-
sure flow). Hence the pre-conditioned problem of {3.13) is written as a
constrained nonlinear equation:

(3.17) PFy)=0 and y € range(P).

where y consists of the solution veetors for (u”. u”,77) and P represents
the :natrix representation of the pre-conditioning described above and sym-
melric positive definite. Since the nonlinearity in (3.13) is gnadratic it is
easy to calculate the Jacobian J(y) of F. We extend the hybrid Krylov
method for nonlinear equations in {BS] to (3.17). Set J = J(y.) at a current
iterale y. and r = ~ PF{y.). Let K., be the Krylov subspace

Ny = span{r, Plr,.- - (PIY" "‘7‘}.
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We define an approximate solution &™" to the Newton update PJé = r
{i.e.. the Newton iferate is given by y4 = ¥ + &) by the least square
minimization:

{3.18) minimize {J&+ F{y ) P{J6 4 Fly.)) overdc K,

The following algorithm is an extension of the nonlinear version of the
GMRES algorithm develored in [BS] fo equation of form (3.17), which
involves the Gram-Schmits erthogonalization of the Krylov subspace A,.

Algorithm: Newton-GMRES
{1} Choose y; and m and set k= 1.

(2) Set r = —PF where F = Flye) and J = J(y). Compute 3 = —(r, F)
andp, = ¢fd kot j=1.2,-- . mdo

hos={Jv. uhi=L2, ]
vy = Pl = 30 ke
Byesy =iy Fryy =i e and vy =t /b

{3} Define Hy,, to he the {m = 13 x m {Hessenberg) matrix whose nonzers
entries are the coeflicients b, 1 < i€ j+ 1. 1 €7 < m Compute the
{east square solution

= 3((Hn) He) ' (Hm)e: andset & = PR

(4) Set yra1 = g + &7 H convergenee eriterion is not satisfied then set
k=k+1and gota (2}

Numerical implementation and convergence analysis of the preposed method
will be reported in a forthcoming paper.

4. Shape optimization and shape derivative, In this section we
discuss the shape derivative of solutions to the thermally coupled Navier.
Stokes equations.  Por the sake of clarity of our presentation we con-
sider the 2-1 steady ense {evolution. 3-D. sxi-symmetric problems and
a more gencral boundary condition can be treated as welll ie. (u.p, T} €
(HEQ:a))? x L Q(n)) < (Hi{Qn)) +8) satisfies the Boussinesg equation

~vAu+u-CuxVCp 9T+ f, T-u=0
(4.1
~k AT+ 4 - ¥T =0

Throughout this section we assume that Q{n) is sufficiently smonth and #
is given as the trace of a function in HYQ(n)). Here rhe sobution (u, p, T)
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depends on the shape of domain Q(a) which is parameterized by a € Q,4.
Consider the shape mirimization problem [HN},[Pi]:

(1.2) minimize J{u.T,a} overa € Quq

subject to (4.1). For example. the cast fuactional J is given as follows

J(u‘»aj = fﬂ(a) !“ - "d:zdr“‘ 3.’\'(0)
(4.3) J{n.a)= fn\,a) [Cul?dz + 3 N(a)

J(T.0) = foo IT = Ta dz 4 3 N(0)

where uy, 1y is the target vector field and thermal distribution, tespec-
tively, 3 > 0 and N{o) derotes the regularization of the shape of domain
Qa). A successful numerical optimization method is commonly based on
the gradient of the cost functiona! with respect 1o o. In order to calculate
the gradient of J we will employ the so-called material derivative method.
Material derivative concepts are well-known in continnurn mechanics and
have been applicd to shape optimization problems in [C'c},[Zo].[HCK] and
the references therein.

Let o € Q.4 be fixed and for {t] sufficiently small, let 2;(a) = F,(Q{a))
be the image of {2(a) obtained by the mapping Fy : 1* — R? defined as

Fy(ry,22) = (21, 22) + Lh{x;. 2).
In the coutext of §3 we have

Dla) = Way) = Na-+tv). veCHOR).

t

In what follows the dependency of Q(a) on o will be dropped. For p €
HYQ) and ¢, € H{SY) let us define

[ ST
(4.4) ¢ =pok
The material derivative of ¢ for field & € (FFHON? is given iy

pi(z +th) - ¢(z)

7 forrc .

{4.3) plr) = 32};
If ¢: has a regular extension to a neighborhood of @, then

ei(z) - pl2)
) t

48 pe) =] = $(z) - h<) - Viplz), 2 €9

is called the shape derivative of ¢. Define

I, = det(DF,) and A, = (DFTVY(DF),L.
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where » denntes the transpose of a matrix and DF; is the Jacobian of F.
It is then easy to verify that

4.7) £ Filiaz = b, $(DFlizo = Dh. &(DF; ")z = —(DhY’
47
Lhlzo=divh and  FAil=o =divhI - ((Dh)* + Dh).

Moreover we have

Lemma 4.1 Let
E= j pedzi, ¢ € H'(S).
Then

45 E= gﬁgimz = / ¢+ edivhdr = f ¢+ divihg)dr.
44 n

Proof: Using Fuhini's theorems we ohtain

Ex = f g’f}'g dr.
a

By differentiating F. with respest to # we obtain
d d, d
E{'Eg = L E}'Iﬂ; -{-Ig 5,; dr.

Since Iy =1 and %Lfaa =div 4 {1.8) follows by setting { = 4.

Note that T2 = (DF7)T". Thus. {1.1) = (4.3) is equivalently written
as: {uf, p', 7% savisfies
(4.9

tut (V) 6) 4+ v (A VU T+ (AN ) = (LT e + fo P o)

(uf, kVuw) =0

W ALST N+ k(AT . =0
for 6 € (HMQ)Y, v € H Q) and n € H)(Q). where Jo = . DF;! and
{-.-} denotes the Lo{{2)—inner product.

We will sketch a proof of the existence and regnlarity of solutions to
(1.1). Let V) be the divergence free subspace of (711{)). Define the
solution map § on Vo x (K1) +8) by S(u,T) = (&, T) where (2. T) is a
unique weak solution to

A+ u Vi Vp=gles+f Va=0

kAT ~u-§T=0
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Firat we show that

=min<T<max=0; aere
rel zel

Let ¥(z) = inf(T,6,). Then v € H}(Q) [T¥] and we have

k(VT, V) + (u- VT, ¢) = 0.
Thus,

E(Vy. Tu) 4+ %(u. Vi) =0.
Since V- u = 0 we obtain |[V¢[* = 0 which implies ¢* = 0 an hence
T > #,. Similarly, one can prove that 1' £ 8;, choosing the test function
v = sup(T,#). Next define a sesquiliner form o on ¥, x V¥ by

~atw,r) = v(Ve, Vo) + (u - Vu, v).

Then G satisfies |
(4.10) a(i, )= (gTea+ f,¢) foralle € V5.

Note that @ is bounded and coercive since o(v.¥) = v |Vu|? (e.p., see [Te]).
Thus by Lax-Milgram theorem (4.10) possesses a unique solution # € 1
and we liave

A
lhve < :— (flz, +91Tlr,) for some M > 0.

Let € be a closed convex subspace of Vo x (H; () + 0) dofined by
C={uD):juy SMUflL,+bnaM)aud 8, ST <8y a2 € 0}.
where 8,2 = max([f]. }62]). Then S maps from C into C. Note that
(e Cw, v)} < M ulg, wlgilv]y: foru w.veV

for some M; > 0 and that }H!(Q} is compartly embedded into Li($).
Hence one can show {e.g.. see [DI]) that the solution map S is compact. By
Shauder fixed point theorem (e.g. see [Tr]) there exists at least one solution
to (4.1). Define the Stokes operator Ag on H = {6 € (1.(0))* ¥V 4= 0
and n - ¢ = 0} by

(-Asu,0)=(Vu,Vg) fordoeV

with domain

dom(=Ag) = {v €V [[Vu, Vo) <cloly for allp € V}
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Then it is known [Ta] that —Ajs is a positive self-adjoint operatar on H,
dom(-As) C H*(Q) and V =dom(—-AY") = [/, dom(-As)]1j2. More-
over, we have ¢-Vé € V. 5 =dom(=A5 /*) for d € V. Thus,

= {=As) gl estf=uTu) € d{:x;:{-;&‘;ﬁ} = [V, dom(=As)ys2 C HY*Q).

Honee, v € £7%(0) and - V. u- VT € Ly{(2). This implies that (0, T} €
(HHQ)Y.

Assume that & € CV(R?). Then there exists a solution {u’,p!, 7'} €
(HM) AHA ) x HHQ)/R x HHD) to (4.9) provided that f! € Ly(M).
Assume that the Hnearized equation of (4.9) at (1. . T} le. £ = 0)

~-v M +u-TE+E Vu+Veg=gles+ i, Vé=ha
(4.11)
u-VI+E.VT=kA+ f3

has & unique solution (§,9.8) € (HE@Q) N HX Q)P x HI(Q/Rx HY(Q)n
H?(Q) which depends continmmously on fy, fs € Lo(Q) and f2 € H1{Q) with
{1, f-} = 0. Fhen, since £y, 4. & and Jy is continuonsly differentiable in
f and Lipsehitz in 2 it follows from the implicit function thenry that for ¢
sufficiently sinall {4 9} has a {locallyy unique solution (v, p'. 77} Maorcover,
one can argue that
t +
Y= and lim ———Ez’i’“
t—0 {

—

lim
f=0

exist in F73($)) and £ exists in H-{Q). Note that
d . . .
5{17: Foby . dMizo = (diva [, )+ (- = (i), s} = ={f k- T¢)
Since 81 =divh. £.4; = A =divh] - ((Dh)* + Dh). and $J, =divh!~
{DhY i follows from (4.9 that (2. 5. T) satisfics
(412

piVe Vo) +vidVu Vo) +{u - Vi+a Vu+ v - {JVu), 0)

+H(Tp, &)+ (V. 0) = (9T e2,0) ~ (. h - Td)
(it V¥)+ (v JTC) = 0
BIST, V) 4 FANT. T4 (u-NT4 8- ST 4w (JST)p) =0

for all ¢ € HI(SY), v € HY{) and n € HE(N).

Next we derive an equation for the shape derivative (¢ ¢/ . T7). Note
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that

(4.13) :
(V(h-Vu), @)+ (AVu, Vo) - (An. A-To)

= <( ('1'2)22 -(hl)h "((hl)rz + (hﬁ)n) > ( Ue, ) ( ¢:; )
-((hl )!3 + ("2)1’1) (hl)z, - (h‘.’):; ut; ’ o.’;
+ ( (hl)nuh + hl"-ﬁ:‘: - (hi’)n"z: + hzu.-.r: - hl(“z.:. + "t;r;) )
(hl )rz“z: + hl“r;z; + (h'.’)n“r; + h?"r;r; - h:l("r.n + "r;n) '

(&)
0:;
= ((h?“h - h‘“*n)::' ¢2'1) - (("‘.’UI‘ = hl"..‘:)f:' é":)

= (curl(hauy, = hyuy,), grads) = 0,

where we assunued that p € H}{Q)N H2(Q) satisfies n - To = 0, Similarly,
we have
(4.14)

(Vih-Tp. o)+ (JTp. 0) + (Vp, h-To)
=<( (h'.’):gl’:, -(h'l).npi': ) (é’ >+ ( Pz, ) (hl(él)r|+h'.’(¢] ).";-)
] "(hl)t;Pr;+(’?l)r,P:; ! ‘452 }’r; ' h'&(o'.’)1'|+h'.'(€')‘.')-l';«
_{ hipz, + hepe, ) ( (B1)r.
hlpn +"2Pn ' (',53),1-,
= ((hi’él )33' ptx) - ((h'zél)z;' Px;-) - ((hl’f’il\)r:- p.", ) ;‘ ((h162:'3|' Pr;)

= (curl{hy &2 — h2d1), gradp) = 0

Tor the conveclive ferm
(4.15)
“((h-Fu)-Su+u -Yih-Vu) &) (0 - (Dh*Vu, 6)

+{divh{u Vu, ¢)+{(u-Yu. h-Ve)

=((h-Tu) - Futu-{h-T(Tu)). ¢}~ {h Vi{u -Tuj. 0} = 0.
Moreover, we have

(1.16) hoTT @)+ (div kT, &)+ {T, h Teé)= 0.

Since ¢ = # — h - Tp it follows from (4.1) and (4.12) ~ (4.16) that
v(Su'. Vo) ={u -Vu' =u' -Vu. 8) +{Tp,8) = (4T €;.0)
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for all 6 ¢ (M N HA(Q))? satislying n- Vo = 0. Using exactly the same
arguments as above, we obtain

E(ST. O+ (6 VT + ' -VT. ) = 0

for all n € HHMNH(Q) satislying n- Ty = 0. Finally. for the divergenee
frec equation we have
{1.17)

(h-Tu. Vel +{u, JTO)+ (V. u, - T}

- {&if’fi}r; + }}?{ﬁ} }f;' &'1’1} -} {éifg;’}f; + i‘?{tﬂf‘}}f;r ‘:‘1‘;}
+{!‘3 N {}’2}:';5’:; - {‘ﬁ?}f: ?:SS;} + (32! "{ki}r;f'r; + i{‘i }'Sg 3;:2}
=l e, +luade, Ry, 4 Boty)

= {curl{hiuy — Ay}, grad vy =0
provided that ¢ € HY(Q). Thus, from {4.12),(4.17) we obtain
(v, Ve)=0 fory € H Q)

Henee one can conclude that if the assemption {4 111 holds. then for ficld
h € C* ™(R?) the shape derivative (¢’ p". T7) & (H} () x Ly(Q) < H {0}
exists and satisfies

=2 A+ 0.V 44 - VusTp =glle;,. Veu'=l
{1.18}

=kAT 4. T 44 -¥T =0
with houndary conditions

#+h - Fu=0 and T'4+h-TI=0 onl.

5. Augmented Lagrangian method with second-order update,
In this section we discuss an application of the augmented Lagrangian
method for consrrained minimization problems that arise in flow comral.
Let H, U and Y be Hilbert spaces and set X = H x U, Consider the
ronstrained minimization problem:

{5.1) minimize flu.a) overu€ Handa e K

subject to elv.a) =4,

where R i3 5 rlosed convex set in U7, In practice, the control space [ is
of finite dimensional {i.e.. which is parameterized or involves finite many
inputs). For example, consider the following optimal control problem

(5.2} minimize J= / |7~ Tai*dr overage K CR™
5
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subject to

pcu-Vus Tp=pdu-~ g-'u‘(T -9iges
0

h 3 Cou=0 u =0,

p;Cou T =V.(ITT). Tir= 2:’.‘__, Q; %,

where we assumed that g is the trace of Lipschitz continvous function
9 on I" and thue in HY*(T). Using the same arguments as described
in £4, given @ £ A one cun show that there exista at least one solution
(u,p. Ty € HAHM? x HENQVR > HH (N L) to (53). 1f we define
a function T hy T = T - Y77, a,6; then the third equation of (5.3) is
cquivalently written as

prCou T =V (kCT)+ ¥V k(T 08 Tr=0.
Let 15 be the divergence free sulspace of (MY (), I = Vi x H13(€2) and
Y = V' x H-H(Q). 'Then (5.3) can be written as e{(n.T).a) = 0 where
= ey T o) ealu.d ) ix defined hy
5.4)

(g,(uj‘, a). ¢} = u{Vu, v:"i}j'—puf'l -Vu, é) - %cz (T- 0o.0)

m

{exfu.d,0) 0% = (FTT.Fe) 4 o0 (u- VT ) = (kT(Tn, 06,0, v)

ford € 1" and v € HHUR), where T'= T + Soreo @ fi. The divergence free
constraint is absorbed in the definition of V. Recall again thar

Ku - Su.ov)i < Al felpealp ety

and that F7YQ) is compactly embedded into L;(0). Thus, the cost fune-
tional J is sequentially weakly lower semi-continueus {e.g, sce [DI]). and
therefore (5.2)-(5.71) has at least one solution.

Assume the following hypotheses.

(111) there exists a soluticn 2* = (4" 2"} to {5.1).

(H2) . ¢ are twice continuensly '—differentiable in a convex
neighborhiond of r°.

(H3) z*is aregular point in the sense 1M7] that
{5.5) Ve indlrY e, hy:ve Handh €K - 0"}

Then it follows from 'M7] thar there exists a Lagrange multiplier A* e ¥
such that

(5.6) S o= a0y + (A 2" iva=a)) 20
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foralive X anda € K. The &, orangian method is based on

an equivalent formulation of (5.1}
{5.7) minimize  f{r,a}+ % e(u.a)f} overue Xando €K.

where ¢ > 0. Then the augmented Lagrangian algorithm {Po,[Hel is the
multiplier method applied to (5.7}; L.e., it involves a sequence of minimiza-
tions of the functional

L (u,0,A) = flu,0) + ¥ e(n,a)) ¢ Efsfgga}l’f‘
(5.8) 2
subject toa € A,
[tidy

where the multiplier scquence {A¥} in ¥* is generated by the first o

update
(5.9 ;' M= 2 a0 - ) e az),

for & > 1. Here the pair (4. 2z} is & minimizer of 1., (- . A¥} and assume
that ¥* = Y, otherwize vach element in V'* has its Riesz representation.
To carry out this iterative a sequence of monotonieally nondecreasing, pos
itive real numbers {¢c}, ¢1 > ¢p > 0 and a start up value X! for the
Lagrange multiplier for the equality constraint ¢{v. o} = 0 need be cho-
senn. The convergence results of the augimented Lagrangian methed for the
infinite dimensional optimization problemn are estublished, for example, in
[IK1{PT]. The augmented Lagrangisn method is a hybrid method of the
penalty method {i.e.. A = 0) and the Lagrange multiplicr method {ie,,
or = §) and combines good properties of the both methods. B overcomes
the difficulty of the penalty method which requires to have a large valie
of cx. The cost functional L., (2. a. A%} is locally strictly convex provided
that A* is sufficiently close to A* and the second order optimality condition

Lg{ﬁ‘,ﬂ‘, k‘}iiﬁ, &)s {*’: h}} 2 (;t,gf - Ihi’é'}
{3.10)
for all (2. A) € X satisfving ’{u”, a0, k) = 0,

for some & > 0, is satistied. Here. LI{u*,«® X"} denotes the hilinear
form that characterizes the second derivative of Lef{u, o, X} = f{u,0) +
{A, elu, o)) with respect 1o = {(u,a) at {z°,3*}. That is, the cost func-
sional f is not necessary to be {locally) convex, which is required for con
vergence of the multiplier methed. The algorithm (5.8) - {5.9) has been
successfully applicd to parameter estimation proklems in elliptic PDEs
JIK2).'TKK] and optims! control problens for 2.1 incompressible Navier-
Stokes [DI}. The first order update {5.9) provides g-linear convergence of
the iterates (up,a¢) in X In 1K3] we have investigated a sceond order
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update scheme for the augmented Lagrangian method. In what follows we
assume that o* €int (R'). Thus, (H3) reduces to

(5.11) - e{z*) is surjective.

Hence the necessary condition (5.6) implies that

(5.12) L(u',a* X)) =0 and e(v’,e’)=0,

for all¢ > 0. An algorithm proposed in [IK3] is to apply the Newton methed
to (5.12). Then the resulting algorithm is stated as: given a current iterate
(z, A) the next iterate (r,, A} ) satisfies

| LM d) e(z) 24 -1 L(z.0)
(5.13) -- ,
e'(z) 0 Ay -2 e(z)
Note that
Ly(e,A) = Liy(#, A + ce(2))
and
(M) LA = L A+ oele) + o(e ()0, 420,

Consequently, suppose |(£.A) = (z*, A*)] is sufliciently small then it follows
from (5.10) [IK3] that L"(z, ) is coercive on X x Y. Thus equation (5.13)
can be regarded as a general Stokes equation. Following an argument due
to Dertsekes one can avoid forming LY during the iteration. From the
second equation of {5.13) we have ¢/(z)(z4 —~ £} = —¢(£). Thus the first
equation can be written as

e Atece(@Nase =)+ (@A = (A +ee())) = Loz, A+ celr))

and hence (5.13) is equivalent to

( L3y el(a)” ) ( T, -z ) ( Li(z. A) )
(5.15) e(z) 0 amoi) e(z)

where A = ) + ce{z).

Note th.at A is nothing but the first order update of the Lagrange multi-
plier if the current iterate z minimizes L.(z, A). Equation {5.13) is more
advantageous than (5.13) since the squaring term ce'(z)"¢’(x) is absorbed
and Jess calculation is involved. f we deofine 2 matrix operator Sen X xY

by
Li(z. A) e'(z)*
S(z.0) = ,
e'(x) 0
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then it follows from {5.10) that 5{z*.)*} is boundedly invertible. Thus,
suppose (z, 1) is sufficiently close to (2*,)") then cquation (5.15) has a
unique solution. We summarize our discussions as

Algorithm 5.1
(1) Chioose A1 €Y, e>é2>0.andset é=e—-¢, k=1

(2) Determine 2 = (¢, 0} € X x K such thal
Ln.a, Ay < L(u",0".2) = f(z*).

(3) Set A = At +ée(r).
{4) Solve for {24 A3} E X x Y

. Zyp=I {,{z A}
{I‘,A} . =-
Ay -2 e{x}

(5) Set zxey = 4 and A¥*1 = A, I the convergence criterion is satisfied
then set k= k+ 1 and go to {2}.

Remark 5.2 A vaiant of Algorithm 5.1 is obuained by skipping srep (2).
Then it is reduced to the Kewton method applied to equation {5.12). If
7 = (u, @) minimizes L(-. \*) over H x K then step (2) is completed. Step
(2) implies a sufficient reduction of the merit functional (the augmented
Lagrange functional). Let (H1),(H2) and {5,10),(5.11) bold. fhen it is
proved in [IK3] that if ]A* — A"]y is sufficiently small then Algorithm 5.1
is well-pcsed and (2*, A¥) converges to (7°, ") g-quadratically.
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MATHEMATICAL MODELING AND NUMERICAL
SIMULATION IN EXTERNAL FLOW CONTROL

YUH-ROURG QU*

Abstract. This paper pressnis an investigation of some sctive control problems for
an external flow firld. A series of numerical simulations are performed to investigate an
upetandy vierans few generated by a cireviar eylinder undergoing a combined rotary and
rectilinear motion, By treating the rotation rate as o control variable, we present results
of the time histories of forces acting on the cylinder surface and their time-averaged
values under severad types of rutations. The impact of changing rotation rate on the
vortex formaticn. including the synchronzation of cylinder and wake, is demonstrated.
Based on the optimal control theary, an optimality systam is formulated to determine
the optimal ratation rates and the solution orbits. Theugh only the moving boundary
mechanism is disensesd, the results prerented here add insight to the optimal design
of rantrol mechanism and may provide guidance to the formulation of other complex
aptimal flow contred problems.

Kecy words. external flow, optimal control. ratating cylinder

AMS{MOS} subject classifications. 76005, 48J20, 93020

1. Introductinn. Flow control has become a critical issue in aerody-
namic improvement and design which may provide real-time effect for many
important applications, such as highly instantaneous maneuvers for the
super-maneuverable aircraft {15], and the optimum design of asrodynamic
configurations 161, It has been demonstrated in a number of experiments
that the control mechanisms, such as moving surfaces. blowing, suction,
injection of a different gas, ete, may provide useful tools in flow control.
Considerable offort has been devoted to the improvement of control mecha-
nisms. However, the principal progress to- date has been essentially accom-
plished by experimental investigations [11]. Most recently, the areas of both
theorctical and computational approaches have received growing attention
and berome a subject of research foeus {12.1,4,13.21,30.10,14,17.22,24.25,
31.,32.5]

This paper presents a systematic investigation on simulation and con-
trol of an external flow by using a moving surface mechanism. In order to
keep the problem casy for analysis and simulation, we restrict our study to
a simple gromnetry, Lo & rotating eylinder. An unsteady flow gonerated by
& circular cylinder undergning a combined {steady or unsteady) rotary and
rectilinear motion was studied. In this model, the rate of cylinder rotation

¢ Interdinciplinary Center for Applisd Mathematics, and Asrospace and Qczan En-
gineering Department, Virginia Polytechnic Institute and State Univensity, Blacksburg,
VA 241610521, This work was supported by Alr Force Office of Scientific Research un-
der AFQOSR Grant F-49620-92.J-0078. The author gratefully acknowledges Profossors
John Burns and §. 5. Sritharan for many valuable discussions on various aspects of this
preject. Thanks arc also due 10 D1, M. Coutancean for providing the sxperimental
results,
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is treated as a control parameter. Several specific flow control problems
were formulated which depend on their corresponding objectives and con-
straints. The ovcrall goal is to gain insight into the possible form of an
optimal controller and demonstrate the feasibility of using time-depeadent
moving houndary mechanisms in external flow control.

Basically, this paper consists of two parts: numerical simulation and
mathematical modeling. In §2, the problems of active control of flow around
a circular cylinder are formulated. The governing equations and two Lypes
of flow control problems are described. In §3, a velocity/vorticity formula-
tion of the governing equations and a computational algorithm used in this
study are briefly described. All numerical results and discussion are pre-
sented in §4. The results demonstrate the feasibility of moving boundary
mechanism in flow control. A mathematical theory in flow control associ-
ated with the problem of a rotating cylinder is formulated in §5. In §6, we
outline the future directions in the area of external flow control. Although
this investigation is mainly concentrated on the flow control problem of
a rotating cylinder, we can extend the numerical algorithm and mathe-
matical analysis into other types of flow gecometry and control mechanism.
For examiple, the utility of blowing/suction contro! mechanism in many in-
vestigations may only need little modification in both existing numerical
algorithm and mathernatical formulation [10,25,32].

2. Problems for a rotating cylinder. The most distingunishing fea-
ture of a rotating body traveling through a fluid is that the separation is
eliminated on one side while the other side of the cylinder scparation is con
tinuously developed. ln consequence, this asymmetry of flow development
results in a transverse force acting on the cylinder surface in a direction
perpendicular to that of flowing stream {33]. The research on the problem
of a uniforn streamn past a cylindrical rotating body has been the subject
of many experimental investigations and numerical sirnulations since the
pioncered work of Prandtl [26,27]. See the papers by Taneda {35], Mo [19]
and Tokumarn and Dimotakis (36] for a cylinder undergoing rotary oscil-
lations, Faneda [34), Koromilas and Telionis [18). Coutanceau and Ménard
[9}, Badr and Dennis [3]. Badr et al. [2], Chen, Ou and Pearlstein [8),
Chang and Chern [6] and Ou and Burns [24] for a cylinder with a constant
speed of rotation.

2.1. Governing equations. Let B denote a circular cylinder en-
closed by an impermeable boundary I', while the two-dimensional exte-
rior domain D = R?\{B U I'} is the region occupied by an incompressible
viscous fluid. In this unbounded quiescent fluid, the circular cylinder is
impulsively started with a translational velocity U(#)es in the #-direction
normal to its generator and simultaneously a time-dependent angular veloc-
ity ©2(Ne; about its axis. In an inertial frame fixed in space, the problem
considered can be mathematically described by the Navier-Stokes equa-
tions:
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Fia. 2.1, Schematic of & rofating cylinder in an fnertizl frame

(2.1 4@ Da=~Cp+oT0 in D),
(2.2) T.-a=0 in DD,

with the following houndary conditions and initial condition

(2.3) a(F.D)lr = ~U'(e. + AN (~ye: + Ze5),
(2.4} a®f}=0. as Ji]— =
{2.5) ®F,0)=0, F={55) D},

where F. 8 = (i1, ). p and v are, respectively. the position vector, the
velority field, the pressure field and the coeflicient of kinematic viscosity,
Also. e:, e, and er are denoted as the unit vector in the direction of 2-,
# and i-coordinate, respectively. Notice that in this coordinate frame, the
exterior domain {f} is a time varying region as shown ia Figure 2.1

In order that the region occupied by the fluid may be treated as a time-
independent domain, it is necessary to recast these governing equations
into a non-ertial reference frame attached to the body (i.e. the circular
eylinder} without rotating of the reference {rame. This can be done by
introducing a new coordinate system {r.y} such that

r=r+ f; Dirydr
y=g
*Thus, the new velocity field 1 = {4, v} is given by

{u:a+§@

v
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In this new non-rotating reference frame, the system of equarions (2.1)-{2.5)
can be rewritten as

L) J

& I Dx2T

(26) w+(u-Vu=-Vp+uViu+

(2.7) V.u=0, in Dx[0,T],
(2.8) u(r. ) = Q) (~ver + zey),
(2.9) u(r,t) — U()e,, as |r]— oo,
(2.10)  u(r,0)=0. r=(z,0)€ D.

The translational acceleration dU(t)/dt of the body relative to the inertial
frame appears as a fictitious body force in the equation of motion when
written in the non-inertial frame. In this new reference frame, the domain
occupied by the viscous fluid becomes time-independent D(t) = D. More-
over, this formulation is equivalent to the problem of a uniform flow past
a rotating cylinder. In all control problems considered in this study, the
rotation rate Q(t) will be varied while the rectilinear speed I’ is fixed to a
constant value. In consequence, the fictitinous hody force is eliminated in
the formulation.

2.2. Optimal control of flow field. From the standpoint of opti-
mal coutrol theory, various optimization problems may be formulated for
a rotating cylinder that depend on the desired performances and control
constraints. A simple example of optimal control problem is to drive the
solution orbit u(t; ) of system (2.6)-(2.10) to a desired flow field 24 by

controllin, the rotation rate §f) with a minimum effort. Thus. one can

define a cost functional as

T
(2.11) J(§Y) = / /D ha(t: Q) - z4l[*drdt.
(Y

Yor example, z; is a desired equilibeium state in which no vortex shedding
occurs. Then the problem is to find an optimal trajectory of Q(t) such that
it will drive the solution orbit u(t; ) as closed as possible {in an appropriate
working space) to the desired flow field 24 in a fixed time-interval with a
minimum cost of {2.11). ,

In fact. the questions of possibility of suppressing vortex shedding
by active control of rotation rate have been investigated by Taneda [35),
Coutanceau and Ménard [9). Chen et al. [8] and Ou [23]. The studies of
active contro] {or feedback control) of flow/structure interactions are of
considerable practical important from the standpoint of wake rmodification
and the reduction of flow-induced vibration [28]. In particular, the issues
of suppressing the vortex shedding or tailoring the wake development have
many potential applications in marine structure, civil engineering and ad-
vanced design of aero/hydro-manenvering vehicles. However, the questions
of whether cylinder rotation can destroy the Karman vortex street and con-
sequently suppress the vortex shedding have remained to be answered. Up
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to now, no previous attempt has been made in thiv area from the standpoint
of optimization and control theory.

2.3. Optimal control of force coefficients. Although many exper-
imental and numerical investigations have been conducted on the problems
of rotating eylinder, most of previous works were primarily focused on the
formation and development of vortices in cylinder wake. It appears that
the effect of the rotation rate on the cylinder forces exerted by the fluid
has received far less attention despite the fact that it has many important
practical engineering applications. In this area, various problems of opti-
mizing foree performance can be formulated. For example. we can consider
problemns of finding an optimal control °, among a set of restricted control
parameters, that will achieve the maximum value of the time-averaged ift
functional

1
(2.12) L) = — f Crit. ),
Ty Jo
or the minimum value of the {ime-averaged drag functional
1 T
(2.13) T = & / Colt, Q).
URs

Here. 7} is the final time of motion after the cylinder impulsively started.
Similarly. we can also formulate the optimization problems by seeking an
optimal control that maximizes the following two important performance
functionals

1 (1 c:,g{am}
214 J3(Q) = ==- ZE g,
(2.14) 3(92) T ) [3;;€f.ih
and
15t 0)dt
(2.13) Ja(Q) = Bt
Jo ! Colt. )t

All above performance functionals may provide us the valuzble implication
and insight to the optunal desizn of control mechanism.

In fact. the obiective of optimal coutrol of forces around the eylinder
surface has a close relation to the objective mentioned in §2.2. From the
fundamental theory of fluid mechanics. it is well known that there is no drag
force on a circular cylinder which is immersed in » uniform potential flow,
Thus. such control problem is to ask whether we can drive an arhitrary flow
field to the potential flow {or at least as cloze as possible to the potential
fiow field) which no vortex shedding occurs.
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3. Direct numerical simulation. In many practical numerical sim-
ulations for the laminar motion of a viscous incompressible fluid, both
exterior as well as the interior flow domains, the formulation based on
the velocity/vorticity variables would provide many advantages over the
primitive-variable formulation of (2.6)-(2.10). The velocity/vorticity for-
mulation is especially well snited to treating initial development of flow
generated by an impulsively started body, in which the flow field is com-
posed of a relatively small vortical viscous region embedded in a inuch large
inviscid patential flow. In consequence, the computational domain may be
restricted to a smalier region where all vorticity contributions are con-
tained. In the numerical simulation part of this study, a velocity/vorticity
formnlation of governing equations was used in all computations.

3.1. Velocity /vorticity formulation. ¥or a two-dimensional viscous
flow, when the velocity field is rotational, the vorticity is defined by

(3.1) we, = ¥V x u.

Here w is the vorticity field. The vortieity transport equation is obtained
by applying the curf operator to equation (2.6). The pressure terin is thus
eliminated when the continuity equation (2.7) and the definition of vorticity
in (3.1) are used. The Cartesian coordinate form of the governing equation
for the vorticity field can be expressed in the dimensionless form as

. hed : - Lor,
(3.2) B +u-Vu = Rev w .
In addition, the vector Poisson equation
(3.3) V= -V x (we;)

again obtained from the continuity cquation and the definition of vorticity.
which can determine a velocity field from a known vorticity field. Al the
variables are made dimensionless by means of the characteristic quantities,
The cylinder radins a s used as the length scale while a/l' is used as the
time scate, The Reynolds number Re = 2Ua/v is based on the cylinder
diameter 2a and the magnitude U of the rectilinear velocity.

In a non-rotating reference frame the dimensionless boundary condi-
tions for a rotating rylinder can be written as

u = —-a(t)ye, + aft)re,. for (z.y)erl
and
u=e;, for V224 y? — oo,

Here, the ratio of speed of cylinder rotation to spred of translation is de-
noted as (1) = Q(1)a/l’. This speed ratio is the primary control parameter
throughout this work.
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3.2. Computational procedure. The numerical approach is based
on an explicit finite-difference/pseudo-spectral technique, and a new imple-
mentation of Biot-Savart law is used to produce accurate solutions to the
governing equations {3.2)-(3.3} {7,8.23,5]. The vorticity transport equation
{3.2) s fiest discretized by a sécond order central differences in the radial
direction and a pseudospectral transform method in the cireumferential di-
rection for all spatial derivatives. This semi-discretization form of vorticity
transport equation, consisting of a system of ordinary differential equations
in time. can be written as

G
(3.4) 7 =, w= (Waz, -+ warop 8-,
for all the interior grid points. Here A, N are denoted as the number of
grid points in the circumferential and radial direction, respectively. The
caleulation procedure to advance the solution for any given time increment
can be sumimarized as follows:

Step 1: Internal vorticity over the fluid region at earch interior field
point is calculated by solving the discretized vorticity transport equation.
An explicit secor .-order rational Runge-Kutts marching scheme [37] is
used to advance in time for (3.4):

241lgs. o) — gsldi. o)
{43. 93

éﬁ'#l =u;¥+

and
I g: = F(&")Al
go = F{™ + 0.54,)4¢
( g3 = 24, — §»

where (') denotes the scalar product.
Step 2. Using known internal vorticity values at all the interior grid
points from step 1, the generalized Biot-Savart law

1 wir e, ¥ {r—
u(re.f) = -—;ﬁ;//;} (r,t)e, x (x re}a‘ﬁ

v - raf?

L[ B e
2 f Ja v —ref?

{3.5) dA+le,
is used to npdate the boundary vorticity values at all the surface nodes,
Here v represents all grid poiuts located on the solid boundars. This
integra’ methed proposed by Wu end Thampson [41] provides the basie link
between velocity and vorticitly fields throughout the numerical procedure,
Step 3: At this stage. all the vorticity values in the compulations!
domain are known at the new time level. Then, the velocity at points on
the outer perimeter of the computational domain is calculated by (3.5}, In
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equation (3.3) now ry denotes the points located on the outer perimeter of
the computational domain.

Step 4: The new velocity field can be established hy solving the Pois-
son equation (3.3) with pres:nbed eolid boundary con fitions and outer
boundary conditions that have been calculated from step 3. The resulting
diseretized Poisson equation is then solved by a preconditioned biconjugate
gradient routine. This step completes the computational loop for each time
level.

One further important point to be noted in this integral approach is the
determination of the initial flow field. In contrast to the special technique
used by other methods, this inlegral approach enables the numerical code
to generate the initial velocity field by execruting one cycle of a solution
pracedure (from step 2 to step 4) rather than employing any additional
treatments.

An important consequence of using the velocity/vorticity formulation
is that the forees can be directly evaluated from the known vorticity velues
on the cylinder surface. In a viscous Hlow, it is well known that the total Lift
and drag forces are contributed by the pressure and skin friction due to the
viscous effects. Hence. for known vorticity values on the cylinder surface,
the lift and drag coefficients can be calculated in the r-# coordinates by

g6 CHO= L+ O = -5 o7 (B51H), coreus
| + J27 w(t)r cos0dD,

and ‘
= Loz () g

(3.7) Cn(t) = Cop(1) + Cry(t) = £ |, ( L )r.x.. 6do

=2 37 w(t)r sin 849,

where the subscript I' denotes quantiti=s evaluated on the cylinder surface.
The subscripts p and [ represent the contribution from pressure and skin
friction, respectively. In particular, we denote the positive values of €'y in
the negative y-direction {as noted in Figure 3.1).

4. Numerical results and discussion. In this section we present
computational results for an unsteady flow around a rotating cylinder that
undergoes a wide variety of steady and unsteady angular/rectilincar speed
ratios at a Reynolds number of 200. In this model, the rectilinecar speed is
fixed to a constant value while the angular velocity is treated as a control
variable. Although the choice of time-dependent rotation rates that may
be used to control the rotating cylinder are unlimited, the computational
results presented here are restricted to the following three types of raration:
1) constant specd of rotation, a = constant; 2) time-harmonic rotary oscil-
lation. «(t) = Asin *Ft; 3) time-periodic rotation, ot} = Al sin=(F/2)t].
All variables are normalized to the nondimensional forms in the formula-
tion. For atype of time periodic rotation, F = 2uf/U is the reduced foreing
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) + diag force
- e
L I s Yy,
T - * + Jifi funce

<<<<<<< .—.ﬂt

(b}
2'{ h N :
\. : )V -
t

)

wl VVNVN 'y
e e Qa)

Fig. 3.1. Schematic of the rotating cylinder with three lypes of rotation: (a}o =
12U = constant: {b} a{t} = Asin=rt: fc) oty = lsina{F/2)eL.

frequeney and A = #F0 is the normalized maximum rotation rate of the
forcing cseillations. Also, £, are denoted as the forcing frequency end
the angular amplitude of rotation, respectively. In a non-rotating frame
attached to the cylinder. the configurations for the differeat controls con-
sidered in the physical space are sketched in Figure 3.1. together with the
corresponding rime evolution of the angular velocity.

In the case of time periodic rotation shown in Figure 3.1(c}, the ¢ylin-
der under control is rotated in the countercjockwise direction about its
axis with a time periodic angniar speed. This particular type of rotation
is expected to provide a substantial lift enhancement and drag reduction
through a proper chcice of both the angular amplitude {thus the normal-
ized maximum rotation rate A) and forcing frequeney {thus the reduced
frequency F). 'Lhis improvement can be demonstrated by compating its
respective force performances against the time harmonic rotary ascillation.
Tor a complete discussion of these performance improvements and compar-
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isonz, the reader is referred to Burns and Qu {5].

Tn assess the accuracy of the numerical algorithm, computations were
first performed over a wide range of constant speed ratios up to 3.25 at
a Revnolds number of 200. Scveral particular speed ratio parameters
were chosen to allow for the comparison against the experimental work of
Contancean and Ménard [9). For a constant value of speed ratio a = 2.07,
Figure 4.1{a) shows an experimental flow visulization picture which is pho-
tographed by a camera representing an instantaneous streamline plot. at
time { = ¢.6. 'The calculated result under the same conditions is shown
in Figure 1.1(b). In the computation, the non-rotating reference frame is
translating with the eylinder while the camera in the experiment is mov-
ing with the eylinder as well, Excellent agreement is ohrained, despite the
fact that a high velocity gradient is induced in the near wake due to the
cylinder rctation. In Figures 4.2{a.b), a simitar excellent agreement. is also
demonstrrted at a greater speed ratio a = 3.25. A detailed discussion of
the accuracy of the numerical scheme can be found in [8].

4.1. Forze performance: Constant speed of rotation. Figure
4.3 shows plats of the time histories of lift, drag and lift/drag coefficients
at various values of speed ratios (U < o < 3.25) and for time in the interval
0 <t <21 Asseen in Figure 41.3(a), when the speed ratio is increased to
2.07, the lift increases timewise proportionally. However, as the speed ratio
further inceenses, 1ift appears to initially decrease then increases gradually
at later times. Not surprisingly. the maximum value of Cy, that can be
achieved by rotation is also higher as the speed ratio grows. It is also
observed that, at speed ratios Jower than 2, the respective lift curves exhibit
a well established periodic evolutirn. However, in the range of a > 2. it is
not kuown whether the nature of this periodicity will continue if the time of
investigation is expanded. Apparently, as can be seen from Figure 4.3(a),
the cylinder rotation (worked as a boundary moving control mechanism)
dacs yield a suhstantial lift enhancement.

As illustrated by the dray curve in Figure 4.3(b) there is a substantial
ncrease in drag when the speed ratio is increased. In all cases considered
hiere, these drag curves seens to converge afler a certuin time and then
cscillate under different amplitudes and [requencies thereafter. Detaile,
numerical results on the effect of the speed ratio to the resulting lift/drag
curve are shown ia Figure 4.3(c). In the range 0 < a < 2 07, the lift/drag
performance appears to improve timewise (for 0 < 1 < 24) with an increase
of a. If a comparison is made between a = 2.07 and a = 0.03, a no-
ticeable improvement. of the lift/drag performance is observed. Although
a higher lift/drag ratio is achicved by increasing the rotation rate in this
range. the question arises whether any further increase of a will result in
a continued improvement of the lift/drag ratio. Intuitively, it is natnral
to expect a monotonical inerease in the lift /drag ratio as o increases to
a = 3.25. However, this is not the case as a comparison is made hetween
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Fic. 4.1, Instanlancous streamline plots for B» = W0, o = 2.07 at t = 9.0. {3}
flow.visulization picture, {b} computed resuit,
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AT A

IR R

Fic. 4.2. Instantaneons streamline plots for Re = 200. & = 3.25 at ! = 50. (a)
flow- visulization picture. /b) computed resnit.
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Fic. 4.3. Temporal svolutions of the lift {s}). drag (b} and lifi/drag (¢} cocflicicnts at

=

200 with various constant apeed ratios i0.65 € o € 3.5}
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a = 3.25 and o = 2.07. In fact. the lifi /drag curves Hlustrate a gradually
decrease in performance over certain time interval when the speed ratio
increases bevond 2. Moreover, this tendency toward lower lift /drag ratio
becomes noticeable when n reaches the highest value {& = 3.25) considered
here. Nevertheless, for all a considered here, a significant increase in the
maximum value of €7 /Cp can be obtained by increasing «. However, it is
found that it will reach its maximum value at a much later time for higher
values of 0.

From the resulis of force improvement observed in Figure 4.3, it is
interesting to examine these performance functionals described in {2.12)-
{2.15} as the speed ratio is altered. Figure 4.4 illustrates the use of direct
computation o caleniate J;, i = 1,---, 4 under various constant speeds of
rotation. Thewe curves shown in Figure 4.4{a) represent the time-averaged
§ift, drag and Lift/drog coeflicients with respect to the speed ratio in the
range 0 < o < 3.20 and for time in the interval 0 < 1 € 24. It illustrates
that the time-averaged hift Jy is almost linearly proportional 1o the speed
ratio. while the time averaged drag J; remains as a constant value up to
o = 2, then monotonically increases with speed ratio thereafter. As shown
in the figure. the optimnal speed ratios corresponding o the maximum value
of J; and the minirnum value of Jy are o} = 3.20 and of = 0, respectively.
Most importantly, the resulting time-averaged 1t /drag is nof linearly pro-
portional to the speed ratio. Asshown in the figure, the highest value of the
speed ratio o = 3.25 considercd here is not the optimal constant rotation
rate corresponding to the maximum value of Ja. The maximum value of J3
aceurs at a lower speed ratio. approximately a} = 2.38. and it represents
a suhstantial increase of $40% over the lower speed ratic o = 0.5.

in Figure 4.4(b), the variation of the {total lift)/{1otal drag) foree ratio
{ie. Jqin (2.15)) with respect to the speed 1atio isshown for o in the range
U< o <325 Although the maximum value of Jj is achieved ar a value of
between o = 2.0 and o = 2.38. it should be noted that this optimal speed
ratio o} is nol necessarily the same optimal value o} as shown in Figure
4.4{a}. The results presented in Figures 4.4(ah) demonstrate an effective
way of improving performance by changing the rotation rate and illustrate
the important of selecting a proper rotation rate in order to optimize the
force performance.

4.2. Force performance: Time periodic inputs. The previous
results only applied to constant rotation rates. In this section we con:ider
time-varying rotations. Beraase the goal of this report is o demonstrate
the feasibility of using a time-dependent moving surface mechanism for op-
timizing force performance. we shall restrict our simulations to two periodic
inputs. That is, the time-harmonic rotary oscillation a{#) = sin #Ff and
the time-periodic rotation a{#} = |sin #{F/2)¢}.

It is well known that when a cylinder oscillates in a uniform flow the
associated forcing oscillating frequency and amplitude can influence the
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FiG. 4.5. Comparisans of termporal evolution of the lift (a), drag (b) and lift /drag
(¢) coefficients for a time-periodic 1otation a{t) = |[sin0.25¢| (T = 12.5) with a time-
harnionic rotary oscillation a{¢} = sin0.58 (T =12.5) at Re = 200 for 0< 1 < 24
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vortex formulation and forces response substantially [38,40]. It has been
experimentally shown that at Rr = 200. the natural Strouhal frequency of
& non-rotating cirenlar cylinder {r = {1} is approximately F, = 0.185 [39".
It is of important to study the behavior of fluctnating forees at imposed
forcing frequencies which lie in the neighhorhood of the natural frequency.
The temporal evolutions of hift, drag aud lift/drag are shown separately
in Tigures 4.5(a.b.c) for a time periodic rotation a{t) = {sin0.25} and a
time-harmonic rotary oscillation a{f) = sin{.34, respectively. Notice that
these two types of rotation are emploved by the same forcing frequency
{i.e. F = 0.18) which lies in the neighborhood of the natural frequency.
The numecrical results clearly confirm the expected benefit of this time-
perindic rotation for hoth lift and drag forees, as shown in Figure 4.5{a,b}.

In comparing these two types of rotation, it should be noted that rotat-
ing in the same direction causes the Bt curve 1o be shifted upwards duc to
the nature of rofation. while the drag curve is shifted downwards. In terms
of performance, this corresponds to an increase of the time averaged lift
force in the time-span of the investigation. while in the same time interval,
& substantial reduction of the time-averaged drag as well. The resulting
improvement of the lift/drag ratio is shown in Figure 4.5(c). There is an
interest in addressing the relationship between the furce inproveent and
the vortex development around the cylinder surface. Although not shown
here, one particular interesting feature is the phase differenee hetween the
maximura value of ift and the vortex sheet cutting time {23]. A thorough
investigation regarding such issue may gain some insight into the possible
form of an optimal controller.

To demonstrate the influence of time-varving rotation on the temporal
development of these force cuefficients, several additional values of forcing
frequency were performed. Fignres 4.6{a.bc) show the comparisons of the
time-averaged values of Lift, drag and lift /drag coefficionts {ie. J. . J2 and
J3Y between these two time periodic inputs with variation of the reduced
forcing frequency in » range of §.08 € F € N.32, These forces were averaged
with resprect to the time interval 0 €1 € 24,

In the case of time-harmnonic rotary oscillation, the local maximum
value of time-averaged Lft, drag and lift/drag ratios correspond to the
forcing frequency which lies in the neighborhcod of the natural frequency,
as shown in the Figure 4.6, This particular feature was also observed in
the numerical results of Mo [19] where it was shown that the drag peak
oceurs at Lthe forcing frequency equal to the natural frequency.

As for the cases of time pericdic rotation. it Hlustrates that & variation
of forcing frequency in this range {ie. (.08 < F < 0.32) has litter effect on
the time-averaged forces, Although the differences in time-averaged forees
are minot. the forcing frequency which lies in the neighborhood of the nat-
ural frequency {F = 0.185) corresponds to 8 larger time-averaged deag and
a srnaller thne-averaged lift. I terms of performanee, Figure 4.6 presents
a clear improvement for the time-periodic rotation {oft) = Isin 7(F/24))
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when compared to the time-harmonic rotary oscillation {a{t} = sinnFi)
at every tested forcing frequency. I appears that the foreing frequency
which les in the neighborhood of the natural frequency exhibits a smaller
iift increase and larger drag reduction when compared to these frequencies
lie outside the neighborhood of the natural frequency.

At this stage, we have demonstrated that the particular type of time-
periodic rotation exhibits clear improvement of force performance. This
motivated us to examine the effect of angular amplitude on the force de-
velopment while the forcing frequency is fixed to a constant value. The
parameter A now becomes the control variable in the optimal control cal-
culations. Figure 4.7 shows that resulting forces on the cylinder can differ
significantly at different angular amplitudes for «{t) = Alsin0.314t]. This
type of rotation corresponds to & forcing Stronhal munber of 8.2 which s
in the neighborhood of the natural Strouhal number of 0.183. The angular
amplitudes considercd here are 4 = 1.0. 2.07 and 3.25. Apparently, as can
be seen from these figures, a larger angular amplitude definitely yields an
incremental §ift coeflicient over the time-span of investigation {0 < 1 < 36).
However, initially the drag increases with an increase of A, then after a
certain time it oscillates with almost the sane amphitude and frequency
around an averaged value. Conzequently. this leads to a substantial im-
provement in lift /drag with increasing A, as clearly shown in Figare 4. 7(c}.

The effect of angnlar amplitude on the time-averaged values of lift. drag
and lift/drag coefficients ic shown in Figure 1.8 for a{t) = A}sin0.314¢
averaged over 0 < £ < 36. Inarangeof 1 < 4 < 3.25. it illustrates
that all the time-averaged values are almaost linearly proportional to the
angular amplitude. Significant increment in Hft coefficients with increasing
angnlar amplitude is particnlarly noticeable. This can be demonstrated by
the eomparison of A = 3.25 with 4 = 1. It represents a 240 increment
of lift performance. Howsver, a slight increment in drag coeflicients with
increasing angular amplitude is observed. A moderate improvement of
time-averaged §ift /drag ratio is also seen. Moreover, the effect of angular
amplitude on these time-averaged forces is very noticeable when compared
to the offect of the forcing frequency shown in Figure 4.6,

As noted in equations (3.6} and {3.7), the total lift and drag forees
are contributed by the pressure and skin friction due to the viscons effect,
In Figures 4 §(a b}, the pressure and skin friction contributions to the [ift
snd drag are shown separated for a{f) = }sin0.283¢#] over the time span
of investigation {0 € ¢ <€ 36). Tt appears that the pressure has larger
contribution to the lift and drag at this particular Reynolds number {ie.
Re = 200). As a matter of fact, similar contributions are also observed for
all frequencies and amplitudes considered in this study,

4.3. Synchrouization of eylinder and wake, The synchronization
of cylinder and wake has Jong been known to be an important component
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Fic. 4.8. Variation of time-averaged force coefficients with respect 1o the anguler am-
plitude for af*) = AsinC314* and 1 < 4 € 3.25.

of vortex-induced oscillations (28, A detailed study of various types svn-
chronization for a hody oscillating transversely in a uniform stream ean
be found in Williamison and Roshko [10]. In the case of time-harmonic
rotary oscillations, the effects of the forcing frequency and amplitude on a
cyhinder wake have been investigated experimentally by Tokumaru and Di-
motakis {36]. Severaf vortex fermations were obscrvad in the wake. Their
experiments dealt with a range of amplitudes and frequencies at a Reynolds
number of Re = 1.5%10%. By fixing the reduced amplitude A in their exper-
iments, four gualitatively different vortex shedding modes were identified
when the forcing frequency was increaged. For the case of time-periodic ro-
tations considered here, It is natural to ask whether such sy ichronization
can occur and how well the numerical results can predict the occurrence of
this important phenomenon.
An exumination of the responses in Figure 4.5, shows that the com

bined system of evlinder and wake will be “locked in” by an hinposed forcing
frequency. This synchronization of the evlinder and wake is du- 1o the Tact
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that the foreing frequency of rotation (F = 8.18) lies in the neighhorhood of
the natural frequency {F, = 8.185). Notice that in the case of time-periodic
roration shown in Figure 4.5, both lift and drag curves oscillate with the
foreing frequency {corresponding to a time pericd of T = 12.5), clearly
exhibiting a periodic response. However, in the case of time-harmonic ro-
tary oscillation. the it curve oscillates with the same forcing frequency
{1 = 12.5) whilr drag curve oscillates with the period of T/2. (rinses
guently, the Wit /dray ratios oscillate at the same frequeney (T = 12.5) for
beth wypes of rotation.

For the case of tinwe-periodie rotation « {$} = {|sin0.314¢ presented in
Figure 4 7, we exteuded our ohservation to a relatively longer time. For( <
£ < 36. an examination of these force curves for A = 1.0 exhibits a periodie
response with a frequency {F = 0.2) precisely equal to the input foreing
frequency (e T = 10). Although this periodic hehavior is not established
fur A = 2.07 and .95, the corresponding eurves are almost perindic in time,
{1 order to confin this perivdicity. a sequenee of instantanecus streamlines
plots are shown in Fipure 4.10. In Figure 410, each plot is separated with
an interval of one time period. Lhese streamlines are plotted in s frame
fixed with the undisturbed Huid, The periodicity of the flow is elearly
noticeable. Two opposite-sign vortices are shed alrernately on opposite
sides of the cylinder at rach cyele of otation The vortex formation in the
wzke is similar 10 the cave of a pon-rorating exlinder (o = 0}, However,
the midline of the ortex street has been displaced slightly upwards due
1o the pature of rotation {in the counterclockwise direction}. These revulls
indicate that rotation may provide an eflective control of the cxlinder wake,

4.4. Controlling of vortex shedding. I the caer of constant rota-
tion. the most complete investigation by experiment regarding the issue of
vortex shedding was accomplished by Coutanceau and Ménard [9] In their
experiments. it was concluded that a Karnmndm vortex street disappeats as
speed ratio increases to a limiting value oy = 2. Their experiments indicate
that there is no formation of any eddy after the first eddy created. One par-
ticular interesting feature is the difference between the experimental work
and our cafculated obcervation regarding the conclusion of suppressing of
vortex shedding at high specd ratios.

Figures 4.11{a b d} show the ealculated oqui-vorticity contours for
various constant speed ratios at 1 == 24, These calenlated plots indicare
that vortex shedding continues 1o oreur even at high rotation ratss {a >
2.07). However, at these high o, the observed formation of the vortex street
hehind a rotaring cvlinder seems to contradict the experimental conclusion
described in {3]. This difference is due to the fact that the experimental
apparatus was such that enly 1) dimensionless time units of data could
be collected and in part by the flow visualization techniques used in their
experiments. For a detailed discussion of this contradictory result. the
reader is referred 1o [§],
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F1G. 4.10. Instantanecus streamlines plots for e = 200, aft) = 'sin0.314¢ F* =2 0.2},
viewed from a frame fixed with the undisturbed fluid. (a) 1 = 16, (L) t = 26 (]t = 36,
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FiG. 4.12. Lqui-vorticity comtours for Re = 200 and o = 3.23 at ¢+ = 54.0.

To better elucidate the continuation of vortex formation and conse-
quently its evolition in the wake, we extend the computation ro a relative
large time-span for a high speed ratio a = 3.25. Figure 4.12 shows the
computed equi-vorticity contour at ¢ = 34. It illuslrates that votices are
continuously created and shed 1o the downstream. However, the vortex
shedding process and flow pattern are qualitatively different from that of
lower speed ratios. In order to confirin the continuous existence of vortex
shedding even at higher speed ratios. Figure 4.13 shows the core trajectory
of the first vortex up to t = 24 for varicus o. It appears that the vortex
core moves further away the centetline (y = 0) of cylinder motion when
the specd ratio is increased.

It is important to note a recent investigation by Badr et al. [2] regard-
ing the issues of vortex formation and shedding. Their oheervations were
perforined both experimentally and numerically at Reynolds numbers of
Re = 10% and Re = 10%. For a rotation rate at a -= 3 and Re = 103,
they show that no other eddy is created after the shedding of two vortices.
In addition. the temporal evolutions of the Lift and drag coefficients imply
that a steady state is indeca approached. However, for a fixed Reynolds
number the issue of whether there exists a limiting value of speed ratio oy,
beyond which vortex shedding completely disappears in the wake remains
to be determined. If such a critical value dors indeed exist, then it is of
interest to know its dependence on the Reynolds number.

Although the suppression of vortes shedding may be achiieved at cer-
tain Reynolds numbier under a constant high spesd ratio. this does not
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F1G. 4.13. Trajectory of the core of the first vortex up to thue 1 = 24.0. 0: o = 1.0: &:
a=207: % a=225

immediately imply that the consiant rotation is the most effective way to
suppress the vortex shedding among all possible forms of rotation. In fact.
the effect of a time-harmonic rotary oscillation on the vortex shedding pro-
cess had been studied experimentally by Taneda [35]. Al several values
of Reynolds number. his experiments demonstrates that vortex shedding
can be eliminated under a sufficiently large value of forcing amplitude and
frequency. As motivated by his experimental obscrvations, we have tested
s similar case of high amplitude and frequency by using our computational
algorithim. As shown in Figure 4.14, the time development of equi vorticity
contours indicates that there is no vortex shedding in the wake at least in
the time-span of investigation. There are only two attached eddies ere-
ated on both side of the cylinder surface. Morcover, these eddies grow
and elongate toward a tongue shape around the cylinder as time evolves.
Kevertheless, the disappearance of thece vortices at large time has not yot
been determined due to the computational time Hmitation. '
Figurcs 4.15{a.b,c) show the calculated equi-vorticity contours for time-
harmonic rotary oscillations under three values of forcing frequency at Lime
t = 24 . Yor the forcing frequency F = 0.16 {i.e. off} = rin 0.5f) which lies
in the neighborhood of the Natural frequency as shown in Figure 4.15(b},
the proeess of vortex formation and shedding is qualitatively similar to the
non-rotating case (Le. a = 0). However. when a forcing frequency moves
away the natural frequency, the vortex shedding patterns are changed sig-
nificantly as illustrated in Figure 4.15{a) and {¢). The calculated egui-
vorticity contonts for the time periodic rotation aft} = (sin={F/2}] are
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Fi1G. 4.14.  Lqui-vorticity contours for a time-harmonic rotary oscillation oft) =
AsinrFt with 4 = 150, F = 6.0 and [« = 35. {a) t = 3.0, (b} ¢ = 6.5, (c) ¢ = 12.0,
fd) e = 23.0
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shown in Figure 4.16{a,b.c). Although the vortex shedding process is sim-
ilar to the case of & = 0, the midline of vortex street has been displaced
upward away the centerline (y = 0). This demonstrates that the type of
rotation can influence the formation of vortex street,

Now, the next question is to ask whether a time periodic input or any
constant rotations will produce the most effective way to suppress the vor-
tex shedding. If we treat the rotation rate ss a conirol variable, it is of
interest to find an optimal control such that vortex shedding will be sup-
pressed with a minimum effort. This leads us to consider the following
mote challenging and practical control problem, That is, to find the opti-
mal trajectory of the rotation rate that will drive the solution to a desired
fow field over 3 fixed time interval mentioned in §2.2. Notice that there
are many control mechanisms other than moving surface can be applied
for controlling flow field arcund a circular cylinder. For example, the blow-
ing/suction on the eylinder surface may produce a similar result [25,32].

5. Mathemntical theory . A precise understanding of time-varying
moving surfaces in boundary laver coutrol may provide an effective way
for §ift enhancement and drag reduction. By treating the rotation rate as
a control variable. we will eventually be interested in finding the optimau
control {i.e. a time history of the rotation rate} based on optimal control
theory., Although here the optimal control problem associated with the
constant rotation rate was solved by direct computations, it is still imnpor-
tant to explore the possible implementation of a computational algorithin
to calenlate the optimal solution for the more genersl problems. In order
1o coustruct a aystematic computfational algorithin for practical designs. a
mathematical approach is proposed which is based on the mathomatical
works described in 31,32, The detail of mathematical analysis of gener-
alized solutions for the Navier-Stokes equalions assuciated with external
flows can be found m [20].

The following discussion is speeifically formulated for control end op-
timization problems of a rotating cylinder. However, for other types flow
control problem encountered in incompressible viscous flows, such adjoint
method may be also used.

5.1. Existence theorem of optimal controls. In this section. we
will establish an existence theorem of optimnal controls. Firsily, the system
of equations (2.6)-{2.10) is recast into an evolutionary equation with Aome-
geneous houndary conditions. Namely, one need to copstruet {wo solenoidal
vector fields B{r) and $(r) such that

&,

Firi=V x {- 2

{3‘? + Si;}}ﬂ;} H
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FiG. 4.15. Vortex shedding pattcrns of the time-periodic rotations alt) = sin= 17t with
various forcing frequencies for R: = 200, ¢ =
F=032

240, (a) F = 008, Ib) F = 016, {c}
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Fi5. 4.16.

‘ortex shedding patterns of the time-periodic rotary vsciffutions o{f} =
isin #{F/2)t] with various forcing frequencies for He= 200.t = 24.0. {a} ¥ = 00K, (b])
F=016.{r) F=032




ADA294785

250 YUH-ROUNG OU

V- ¥&=90

Tlp = -ye, + re,

¥ =0, for p(r) > 2=1/¢
and

B(r) =V x [y(1 - Or))e, ,

V-2=0
3 =90
® = e, for p(r) > 2/t
These two vector ficlds ®(r) and &{r) would carry the non homogeneous
boundary values at. the solid surface and far field, respectively. Here ©,(r)
is a positive scalar cut-off smooth function such that for ¢ > 0.
O.(r)=1, r& N(T.¢), neighborhood of T
Or) =0, p(r) 222
(2900 o pe) < 2~V k=12

CLRES ;—(;7
where p(r) = dist(I',x),x € D.
Let us now introduce a change of variable such that,
u(r,t) = vir, t) + '®(r) + Q) P(r).
A system of equations with homogeneous beundary values is ehtained:
Vit (v Vv 4+ U(v - VE)+ Q(t)(v - V) + U(® - Tv)+ QT - Tv)
=-Vp+ vV +fae  in Dx[0,7]
Vov=0,inDx{0,T,
vlr =0,
v -0, as {r] — o,
u(r,0)=0. r=(zs.9)eD.
where fag = f(I". Q.0 ¥, ®) and supp{fae} CC .

In consequence, this systein of equations is then projecred to the solenoidal

subspace H by the orthagonal projector £ : L2(D) - II( D), we get

AVLD) + vAV(L Q) + N(®, 8, v(1; D)) = F(&,¥,0,
(5.1)
v =0,

where H = {v: D -« R%v € [}3{D).V v =0, and v-uly = 0}. In
(5.1), A is the Stokes operator and I is all known quantities. while N
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includes the inertial term of original equations. Also, 0{#) is the angular
speed and is treated as a control variable in the formulation. The proof
of existence theorem for the system (5.1} is analogous to the procedure
outlined in [20.31], we will omit the proof here.

A simple example of optimal control problems as mentionedin §2.2is 10
drive a solution orhit n{t; Q) to a desired flow field z; by using the rotation
rate (1) as a control parameter. Hence the optimal control problem is to
find an admissible pair {v. ) such that minimizes the cost functional

T T
(5.2) J(v,0) = j V() ~ B + QO ~ 2aila pydl + X / 10,121,
{ [

over an admissible set Uqpq. Here U, is the sot of all admissible pair {v, )
that sati~fy equation (5.1} and .

) (v ELD, T VY x HIY(0.T):
(i) Jiv.) < o0,

Noticn that the cost functional in (5.2) is penalized by the control, which
is necessary in the proof of existence of an optimal control. Aln, Visa
subspace of I7. The existence theorem cau be stated as follows:
Existence Theorem. Theve ezisis an opfunal solution (v* Q) € U,z
such that the corresponding value of the cost functional achistes the abanluie
moamunt. Le.
- *y : .
Jvn. ) = {w.ii?sf:s.; T 4.

5.2. An optimality system, The next question is to ask how to
determine the optimal controls. This can he accomplished by introducing
an adjoint state which corresponding to the adjoint of a linsarized version
of state equation systemn {3.1). The optimal contrel 1 is thus determined
by the solution of the optimality system:

Sv{ )+ pAVQ* )+ N(v{INL O = F(TH)
~ap{O = v AV} - NPT = v ) = U B+ (P — 24,
viB)=0pT) =0,

5.3}

and

T
(5.4) [ (90 ), F (.0 )0y = 29500 - ) at 2 0,

where p is the adjoint state and N¥'{v"} is the Fréchet derivative of N{-)
at v*. This oplimality svstem consists of the evolutionary Navier-Siokes
equations, the adjoint equation and an optimality condition (5.4) that re-
lates the optiual control F° with the optimal state v*. However, the res
sulling optimality system is complex and formidable. ‘Therefore, the next
step is to hnplernent an eflicient numerical algorithm to solve the equations
{5.3}-(5.4) computationally.
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F1u. 6.1. Applications of houndary moving surfaces micchanisin in exterual fow contvsl,

6. Conclusion. The objectives to demnonstrate the feasibility of a
time-dependent moving surface as a control mechanism in enhancing force
performance and changing the flow field were achieved. Although all op-
timal control problems for a rotating cylinder in this study were direculy
computed by trail and error variation of controls, the numerical results are
significant because they show a proper choice of the rotation rate can lead
to improved flow fields. For the case of a constant speed of rotation. sev-
eral optimal control problems were considered and solved computationally.
Using time-periodic totations leads to a considerable improvement in the
force coefficients and was shown (o be very effective, especially compared to
time-harmonic rotary oscillations. Very precise periodicity of the force for
certain cases was established, and this periodic behavior has considerable
impact on controlling the vortex formation in the cylinder wake. The pos-
sible forni of controller to suppress vortex shedding was discussed. Based
on the theoretical approach described in previous section, a computational
algorithor may bhe implemented to scek an optimal control such that it will
suppress the vortex shedding with a minimum cost.

The rotating cylinder mechanisin (as 2 moving surface control) devel-
oped here can also be used to investigate fundamental question regarding
unsteady separation control. For example, the moving surfaces mechanism
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has been successfully applied to boundary-laver control in a number of ex-
periments by Modi et al. [28]. In their experiments, the boundary-layer
flow is controlled by an application of two rotating cylinders located at the
leading and trailing edges of an airfoil. It has beens shown that this mech-
anism can prevent How separation by retarding the initial growth of the
boundary layer. with the important consequences of lift enhancement and
stall delay. In spite of the fact that considerable aerodynamic benefits were
gained by changing the cylinder speed ratio, in their experiments the speed
of rotation was performed merely with constant values. However, it should
be noted thar i the rotating cvlinder mechanism is applied 1o a region of
flow domazin in which time-dependent separations occurred, a consiant ro-
tation rate may not correspond to the optimal perforinance when an airfoil
is undergoing a rapid mancuver. Such observation provide the motivation
for us to consider problems of unsteady flow control by mieans of a time-
dependent moving surface mochanism. Tigure 6.1 shows some possible flow
grometries for future investigations. Using such mevhanisme as a controller
allows us to formulate a wide variety of practical control problems in real
engineering applicarions. Modifications of existing numerical algorithms
needed for these types of control problems depend on performance and de-
sign constraints. It is our hope that this investigation will represent a step
toward control of external flow, and serve as a guide on the formulation of
many practizal optimal Bow contrel problems,
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OPTIMAL FEEDBACK CONTROL OF HYDRODYNAMICS:
A PROGRESS REPORT

$.8. SRITHARAN®

Abstract. In this article we review some of the recent results in the mathemat-
ical theory of optimal feedback control of viscous flow. Main results are existence of
ordinary and chattering controls, Pontryagin maximum principle and feedback synthesis
using infinite dimensianal Hamilton-Jacobi equation of dynamic programming. Some
preliminary results an stackastic control also presented.

AMS(MOS) subject classifications. 4¢ 33,76,00,49.35.46

1. Introduction. Optimal feedback control of viscous flow has many
applications in engineeriug sciences. "o this context. both deterministic
as well as stochastic control of Navier-Stokes equations are of interest.
During the past few years several fundamental advances were made in
the deterministic case. Main questions addressed were existence theorem
for ordinary optimal controls [21,32.28,19], existence of chattering controls
[17,1R]. necessary conditions for free terminal state problem {21,36,1.23] as
well as the full Pontryagin maximun principle for problems with termi-
na! constraint [16] and feedback synthesis using Hamilton-Jacobi - Bellman
equation [30,16,31]. Finite element methods for the maximum principle
with frec end state arc analyzed in [22]. See also the forthcoming book
{33] for reports of progress by various authors of this field The concepts
used in these works have their origins in the classical works of Euler, La-
grange, Hamilton, Jacobi and Weierstrass and also in the mo-dern works of
Carathieodori. Tonelli, Young, Pontryagin and Bellman. Ju this article we
will review seme of these developments. Some initial thoughts rm stachastice
optimal control theory will also be presented.

As shown in the above papers of Sritharan and of Fattorini and Sritha-
ran, time depenident flow problenis with boundaery contral can be reduced
to infinite dimensional sernilinear evolution equations of the following type
in a separahle Hilbert space X:

(1.1) vy + v Av 4+ Blv) = A(v. 1)

(1.2) virj=(<X.

Here A and B are respectively the well known Stokes operater and the
inertia term. A is the control operator whose form is dictated by the type

* Code 574, Nuval Command, Contrel and Ocean Surveillance Center. San Dicgo,
CA 92152-5000. Supported by the Mathematira! Scisn~»s and Mechanics Divis
ONR.
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of forcing {boundary forcing, distributed forcing etc}. The special cases of
the contro} operator

{1.3) Np. )= Lyl
and
{1.4) Nzl +f

where Ly is a bounded linear operator and F is a given eletnent of X are
also of intersst. As shown in [19], for a large class of flow control problems
inclnding exterior hydrodynnimics and flow through water tunnels the con-
trol operator appears as a Haear termn similar to {1.3). When the boundary
control is distributed {17} we obtain a nonlinear control operator similar to
(1.1}). Similar models have also been proposed by experimentalists {25.26].
The simple contro! operator of the type {1.4) was proposed by Fursikov
21}

i When we do not have adequate convexity, the contrals will be taken as
probability measures {chattering controls} p defined on the control set U
and the contrcl operator (-, ) will be formally replaced by

N{t:)p:/{f&'{v,{f’}p{d{f},

Then N{rip ¢ t65¥A v, U) with closure in the weak topology of X. The
corresponding trajectories will he called relaxed trajectories. In such <itn-
ations. as discussed helow, a similar relaxation should also be ntraduced

in the cost functionals.
In some of our problems the state will have a terminal eonstraint of

the tvpe
o(TieYCX
where Y is a clased subset.

We will consider two classes of cost functionals:
{1} Finite Horizon

. 7
{1.5} Gle{l))+ / LU, el Nt — inf.
o
{2} fufinife Rorizom:
(1.8) / T oML, w1, U (0))dt — inf
o

where X > 0 is some discount factor and £, -} is the Lagrangian {for
specific forms of the Lagrangian see the papers quoted above). The corre-
sponding relaxed funetionals will be,
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¢(1a(T)))+/T/ L, o), U)p(t,dU)dt — inf
s Ju T ' '
and

A ” e~ M [U L, o(1), U)p(t,dl7 )dt — inf

respectively.

Let (T, Xy, m) be a complete probability space, where T be a set of
elementary events. Sy is 2 sigma algebra of subsets of ¥ and m(.) : Ty —
{0.1] is a complete probability measure. For stochastic control we will
consider the random evolution system on (T,Xy,m) with a white noise
forcing,

(1.7) dv = F(v,U)dl + dW

where the “drift” term is given by

(1.8) Fio, )= =vAv - Bv)+ A(v,17),

and W is the X-valued Wiener process with covarianece @ ¢ L(X: X)
being a symumnetric, nonnegative, nuclear operator (ie. of finite trace Tr Q <
+oc).

We will consider three classes of cost functionals:
(1) Finte Horizon:

7
(1.9) & [d)(v(_T))) +/ C(t,n(f}.("(i)_)dt] — inf.
b
{2) Infintte Horizon:
g
(1.10) £ [/ e’“l:(t,v(l).U(t)}dt] — inf.
L
(3) Ergodic Control
1 (7
(1.11) llrnll.x:f?/; L{ o), U(N)dt -~ inf  alimost surely.
In the above. &[] represents the expectation.

(1.12) & plv)) :=/ W(v{w)ymidw).
T
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2. Definition of trajectories. Let us first recall some of the proper-
ties of the operators A, B and A from earlier papers. In this paper we will
restrict ourselves to fluid flow in bounded domains and refer the readers
to the literature quoted for analysis in unbounded domains. The Stokes
operator A satisfies the following well known properties [7].

ProrosiTioN 2.1. A s self-adjoint and positive definite.

‘These results have the following conscquences. ~A generates a holo-
morphic semigroup S{I) = exp(—tA). The fractional powers 40 € R
are well defined and A” for @ < 0 are bounded. For o > 0 we write
X = D{A%}and equip this space with the natural inner product {v,u}, =
{A%v. A%u), corresponding to the norm [l = JA%v|]. Fora < 0, X, is
the completion of X under | - |,

The inertia term B(-) satisfies the following

PROPOSITION 2.2. There ertsts 3, 0 € 3 < 1/2 such that B(-) maps
Xis2 into Xoa. Morcover, B(:) : Xyy5 —~ X_; is continuous, locally
bounded, and locally Lipschitz continvous, ve. for exery € > 0 there exist
constants Ky = Kp(C). Ly = LglC) such that

(2.1) [1B{v)il-g £ Kp. forv € Xyy and liolly;2 < C,
[IB(v) = Blujll-s < Lpllv = /2.

(2:2) forv,u € Xy and lefl: il € C

The control £{-} takes its values in the control set & which is a normal
topological space. The control operator N(v, /) is defined in X9 ¥ U

ProposiTION 2.3. A(.,-) continsonsly maps X/, % U inta X. There
erists a continvous funchon x{}: U — RB. &{I'} 2 1 such thot, for every
C > 0 there exist Ky = Kn(C) and Ly = La{C) such that

23)  IN@.D) < Kywl), forv € Xy, fvla < C.UEU,
[N (2, Iy~ N{u. V)] € Lallv - ullyen{},

(24) forve X nu€ Xy U eU and vl llully2 £ C

The space 84,300, TU, ) of admissible controls consists of all U-
valued functions defined almost everywhere and satisfving,
(2.5) &(U(-)) € L*0,1).

This implies that [17], Yu() € C([0,T]; X1,2). the control aperator
N(o(- ) 1)) is strongly measurable. In fact, we have A(n(-}.I7()) €
L0, 7. X0




ADA294785

OPTIMAL FEEDBACK CONTROL OF IIYDRODYNAMICS 261

2.1. Ordinary trajectories. By definition, solulions or lrajeclories
of the initial value problem (1.1)-(1.2) in an interval 0 < ¢ < T’ are Xy/a-
valued functions »(-) continuous in the norm of X1,2 and satislying

t
v(t) = St)¢ - /c AP 5(t = 1) A Blu(r))dr

¢

(2.6) - /U S(t = mN(o(r), I(F))dr. 0<t< T

The following results defines the trajectory for our control systemn.

Turorem 2.1, Let § € Xy and U(:) € Uy g(0. T3 U, &), Then (2.6)
posscsses a unique solufion v(-) € C([0.17): Xy9) for some 77 < T. Morc-
over, suppose that

(2.7) feitlly2<C 0t T
Then, if [0, Ty is the marimal interval of existence of 2(), we have T >
~f

This imiplies that, if v(?) is a solution of (2.6) in a closed interval
0 <1 < T, then n(t) can always be extended to a larger interval 0 <
t <T", T" > T solving the equation in t > T with v{T") as initial
condition. This implies that each solution v(.) of (2.6) either exists in
0 € ¢ € T or possesses a maximal interval of existence [0,Tn), T < T
with limsup,_7_ [[o(O)]l1/2 = +.

2.2, Chattering controls and relaxed trajectories, We will be-
gin with the the class V), (6. T:U. &) of chattering controls [17). Here the
control set U is required to be a normal topological space and the in-
stantaneous values of the chattering controls are regular finitely additive
probability measures Erba(U,‘lc) defind on an algebra ®¢ of suhsets of
U. This Banach space of measures coincides with the strong dual of the
Banach space C',(U) of bounded continuous functions.

DeriNiTION 2.1. Chattering Controls: The space Vi (0.T; U, %)
of chattering controls consists of all

£2(:) C(LN0. T; CyU)) = LG0. T: 24,0, 8))
that salisfy

(2.8) (1) Me(Yirge rsamiv e S L

(i1 J() € LNO.T:CylU))
1s such that for U e U, f(L.U} 20, ae. m 0 <I<T then

T
(2.9) //f(t.l/');z(r,dﬁ)dtgo.
v JU
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{(#ii)  if Xel-) is the characicristic function of a measurable sete C [0.7]
and Xpr(-) is the funclion identically 1 in U then

T
(2.10) fg j;?{"c}:(t} & Xy (U))p(t,dl )dt = meas (e).

(211) (i) /{; K(U2 (- dl) € L0, T).

Note that ordinary controls in the space I, 4(0, T, U, x) can be dupli-
cated by chattering controls. If V(-) € #,4(0.7;U. »), we define a chat
tzring control by the Dirac measure coucentrated on V(1) pft) = &y
it is obvions that p{t) satisfies conditions (1).(31).05): as o {iv).

/a; () (- dU) = 8(V()?

which helongs to L10, T} by the condition (2.5,

We proceecd to the definition of the relaxed system. It will be of the
form {1.1)-(1.2), bur with different coniru! set and control operator. The
refaxed counterparts (of the control set LU and control operator A} will
be denoted by RU and N respectively.

. If,et Zpa(U: ®e,x) be the subspace of By (U, @} whose clements
satisfy

(e o | w(UY iuldt) < .
Kip) /U &7y {ulidl]

e will also denote &{p) = lipll..
The chattering {or relaxed) rontrol set RU corresponds to all

#€ B (U, 8¢, ) that sarisfy
p{AY 20, YA€ P and p{Uj= 1.

Chattering controls 1ake values in RU and satisly the control space hypoth-
esis (2.5) with x(g) playing the part of &({'). Concerning the structure of
chattering controls we have
PROPOIITION 2.4, Let P be the s¢f of all Dirac measures defined as:
D={peRU,p=8p."" €U}

and It THAt{ D) be ofs closed conver hull wath closurc taken in the C)(U})-
ueak topology of Ly (U; ¥¢). Then

) RU = @w(D).

(st} Elements of D are eractly the extremal points of RU.
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The relaxed control operator N : Xy ;3 x RU — X will be denoted
N(r)u vo emphasize the lincarity in p and is defined in the following way:
N{v)p is the unique element of X satisfying

(z. N(v)ps) = _/U(zaz\’(ti,(/'))u(d(’). Vze X.

In fact we can show that,

ProPosITION 2.5. N(v)p is continuous in X,;2 x RU and locally
Lipschatz cuntinuous: (f Ky = Kn{C) and Ly = Ln(C) arc the constants
in (2.3-2.4) then

(2.12) Nl € Kxr(p). forv € Xy divli2 < C.
213) N (o) = N2l € Dl = 2lazzmpe),

forve X,z € X0, 10 € RU and [jv||i2. |2l £ C.
Morcover, Yo() € C(0, T Xy 2) and Yu() € Vp {0, TU,x). N(v(-))n()
1s sirongly measurable. ,

The relaxed system corresponding to Vy, (0. 72U .~} is
(2.14) ve(t) + Ar (1) + Ble(t)) = N(v(1))p(t)
~nd the unique solvahility can tie deduced from Theorem 1.

THEOREM 2.2. Let € Xz and p(-) € V. (0, T:U &), Then (2.14)
possesses a untque solution v(-) € C({0. T’} X a) for some 1" < T. More-
over, suppose thal

(2.15) ”ﬂ(f)“]/g <C, 0<t<T.
-~ Then, if {0, Twn) is the mazimal inlervel of existenee of v(-}, we have Trw >
.

2.3. Relaxation thcorem. Let us now describe certain interesting
approxitiation resnits for relaxed trajectories {18]. First result is a contin-
uous dependence theorem for the relaxed problem (2.14).{1.2).

PrRoPOSITION 2.6. Let p(-) € Vy (0, T U, k) be such that the Irajec-
tory w{t, p) for (2.14) exisls an 0 St < T. Let {pn, ()} €V (0,T:U,x)
be a generalized sequence wilh

T
o) - e o,
[}

Then there erests ay and a constent C suck that. if a > oy e vl p)
erisls i § < < T and

fott, ) = vt gl £ C
(2.16)

T 1/2
[[1WJﬂ—MﬂMW] L wen ]
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The main result below assures that the chattering control space is not
o0 large and each rclaxed trajectory (of {2.14). (1.2} } can be uniformly
approximated by an ordinary trajectory (of (1.1), (1.2)).

THEOREM 2.3. Lel (-} € Vo (0, T; U, &) be such that the trajeciory
v(t, ) for (2.24) ezists m 0 < ¢t < T and let ¢ > 0. Then there exists a
countably valued ordinary control U(:) € Uy (0.T; U, x) saticfying

ess. supyepo myR{(U(t)) <00
such that the trajectory v(1,U) extsla in 0 < ¢ < T and
(217) lvfe. ) = e (t.Ullb2 S . W1 €(0.T]

2.4, Trajectorics for stochastic Navier-Stokes equation. Solv-
ability theorem for gnconirofi-d stochastie Navier-Stokes equation (ie (1.2},
(1.4 and (1.7)) with {7 = 0) with additive and multiplicative noise has been
established by many authors[1,34,3.6]. Here we will present a solvability
theorem for the controfled system (1.2)-(1.4) and {1.7) for the case of twe
dimensions. Proof of this result is only slightly different and will be given
in (331

{ Lit us denote by LIV the c-algebra generated by {W(s),s < t}.
We will define the class of admussible controls UW,(RY: X) as X-valued
stochastic pracesses I7{2.w)} which satisfy the following twe conditions.

(1) U(t,w) is Brownian adapted. That is. foreach t > 0, = -+ U(t,&) is
measurable from (9, EY) — (X . B(X)) where B(X) is the Borel algcbra
generated by the closed sets of X,

@€ { fr }%Lf‘{f}]!"’ds} < 00, ¥T > 0.

TueoREM 2.4. Let U € UW(R*; X), f € L} (R*;X). (€ X and
Iet W be an X -valued Wicner process with irace ,“Sezss corariance Q. Then
there exists a unique solution v o (1.2)-{1.4) and (1.7} such that

(2.18) v(.w)€ L}, (R Xy) D LE(RY X)NC™ ", woas

and
1, 11 nanl 1 112
(e {ﬁ"{f}ﬁz + 3”‘§1‘¥’§I.§.3ae.t;xg§,£ <G+ ;ﬁfiisﬁ{n;;x;
2.19 15‘{{"-’ t-TrQ. ¥>0
{2.19) +=0 ] ‘Iiﬁ{c,:;x;} +t-TQ. Viz 0
20) @ £ lolxo ] S CT) <o VT 20,

and¥s > 1, 0< 8 < 1/2,

(2.21) @) £ [ﬁnﬁc;.,} < O(T) < %, VT 2 0.
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Here C7"** denote the class of continuous functions from (0,7} — X _,
such that
jio{ta) = o{t)}l-
flolezen = sup fiv(ta) = o(t: |-, 1)" L < x,
T 0Lt STt =15]<8 ita — ty]

and €% = (o O70°

3. Existence of optimal controls. In this section we will give a
flavar of the type of existence theorems established in our papers. More
general theorems can be found in those papers. Results of this section rely
on global unique solvahility of (1.1)-(1.2).

3.1. Tonelli Type: Ordinary Controls. When adequate form of
convexity is available, optimal controls can be sought within the class of
ordinary controls. Such existence theorems were established in [21,32.19].
Simplest of this 1ype of theorems can be formulated as follows. Let us
consider the case of free terminal condition (i.e Y = X)) and linecar control
operator N (v, ") = LxU. Control set U C F is a cloced convex subset of
a Hilbert space F'. We will consider a special cost functional of the form,

T
(3.1) / L(rv(r). T (7)) dr — inf
J

where L(1,v,"): U — R* is a convex function.
THEOREM 3.1. Lef the Lagrangian selisfies the growth condilion,

(32)  Litw. )z alloly + AR -7, Yo € Xy ¥ E F,
with 3 > 0 and a.4 > 0. Then there erists an optimal control U/ €
L0, T: F).

3.2. Young type: Chattering controls. For general flow control
problems existence theorems using Young measures can be established
without requiring the convexity of L{v,-) and of U. Moreover, it is possible
to handle the nonlinear form of the contro] operator A’(v, 7). We will work
with the relaxed evolution system (2.14) and the relaxed cost functional,

T
{3.3) /‘/;JL'(r,ﬂ(r),b')/z(r,dU)dr——-inf.

The following thecrem is a special case of the results in 117).
TueonrM 3.2, Let the Lagrangian satisfies the grovith condition,

(34) CL(t, v l)> n”‘u[ﬁ'/? +3x(U)? ~, Yo € X,V U,

with 3> 0 and o,y > (J Then lhere exists an optimal chatlering control
B(:) €V (0.7°U k).
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4. Pontryaginmaximum principle. In this section, we will present
the Pontryvagin maximum principle which provides the necessary conditions
for aptimal controls. In its complete form, this theorem is proven in [16],
using the Ekcland’s variational prinriple. A special case of this theorem was
proven in [30] using viscosity solution technique for the Hamilton-Jacobi

equation.

4.1. Pontryagin maximun prineiple for ordinary controls. Let
us consider the control system (1.13-(1.2) with control operator (1.3}, cost
functional {1.5} and target condition v{T} € ¥ € X. Let us define the
Pseydo-Hamillonn,

(1.1) Hit,v.p.U) =< p, F0.I) > ~Lil. v, 1),

where Fle 07} is given by (L&) and {13} Note that we can now write
{1.1} a=

4.2) we = TRt v, U).

TREOREM 4.1. Let T € L¥{7, T 1) be an optimal control and »(1.7.¢, 1)
be tht corresponding trajectory with mitiel data § & Xy ottt = v, Then
there exists an adjornt state p € C({r. T XN L7, T X1 j2) such that

(4.3 po= =V H(LE, U p),

with final dule,

{4.4) -p(T) - To(e(T)) € Ny{z{]))

where Ny ({1} 18 the Clarke normal cone 16'Y af 6(7). Morcorer,
{4.5} ’ Hit, b.p,[1) = éx;a{} Ht .p. 1)

4.2, Pontryagin maximum principle for chattering controls.
Let us consader the rcdaxed control system (2.14) with general contrel op
erator, initial data {1.2), cost functional (1.3) and target condition o(T) €
Y € X. Let u= dofine the Helyred Pscudo-Iamilfontan,

(4.6) Hullv,p.p) =< p.F(v.pe) > ~L{1. v}ps,
where

{4.7} Fiv.p)= ~vAv - Blv)+ j;} N, It dL)
and

(1) Lit.vole = [U Lit, v Ut AU
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Hence also,
(1.9) 7'2;;(!, v.p.p)= [Uﬁ(t'v,p‘ Up(t, dU).

Note that we can now write (2.14) as
(4.10) v, = C, Hr(t. v,p ).

The following generalization of the Pontryagin maximum principle can be
proven by methods analogous to those used in the previous theorem. De-
tails of the proof is given in 33].

THEOREM 4.2, Lt o € Vp {0, T .U, x) be an oplimal control and
v{l.7,§. ) be the cervesponding trajectory wath tial dete { € X, at
t = r. Then there erists an adjent state p € C(|r. T]:X):"Lz(.‘. T: X2}
such thet

(4.11) Py = -V Hpit .1, p),

with final dala,

(4.12) - piT) = Vein(T)) € Ny (o(T)),

where Ny (o(T)) 18 the Clarke normal conc 1o ¥V al #(T). Morcover,

4.13 Hrlt,o.p. 1) = max Helt. o.p. o).
(4.13) K P i) uTRy R Py

5. Dynamic programming and feedback analysis: Determin-
istic casc. In this section we will describe the results on fredback control
theory originated in [30] and elaborated in [16,31]. Let us define the valuc
Junction for the cemtrel problem (1.1).01.2) and the relaxed cost corre-
sponding to (1.5 as

7
V{r.{) = min {d)(v(f{‘))) +/ Lit.v(i))pe(t)dt: p() = Vi, d7.1 :U\N)} .

with a similar definition for the infinite horizon case. From this definition
it is possible to establish the Bcllman princple of eptinahty

Vird) = inf{ / Lir,ui{rdip(ridr + V(t e{)); p(-) € WV (r. U, x)} .

For the case of infinite horizom this prineiple takes the form,

. .
V() = illf{/ ML vl W pinYde + V(o (t)): pld € Vi (0.6 U, '-:)} .
) :
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From this, if the value function is differentiable we obtain the infinite
dimensional, first order, Hamilton-Jacobi-Bellman equation,

(3.1) 9V ~Hp(r,{,-0V) = 0.
with

VT ()= ¢((), YeX.
flere the true Hamiltonian ¥ (.-, -} is defined as

5.9 Hplt.e.p) = max Hplt.v,p. ).
{(5.2) rit.e.p) ;;i;% rif.v,p.p)

For the infinite Horizon case we got
(5.3) WV 4+ HR(C. =8V} = 0,

We will note the following importaut resnlt. If we define a true Hamsiteman
H{-.-. -} using ardinary contrels.

{3.4) Ht.v.p) = sup H{t,v.p. U),
velr

then, we have

ProrosiTiON 5.1,
{5.5} Helt, v.pi = H{l. v.p).

Proof: Nule that in {4.9). taking a Dirac measure g1 .= &+ we oblain.
(5.6) Hit.v.p) < Hall.v.p.

Now,

Hult,o.p.p) = ]g‘fi{t, vp Uiplt. dly

, S_[' sup H{t, v p, U)ait dti)
U el

(5.7)
= Hit, v 1) [_ (it dlly = Hit v . p.

{3.2). {; 73 and (3.8} give us {3.5).

1u genrral the value fun-tion does not have sm“;r;esif differentiahility,
In fact as presented in Theorem 9 below, we taly know that it is leeally
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Lipschitz continuous. Thercfore, equation (5.1) needs to be interpreted
either in the sense of nonsmooth analysis {8,9] or in the sense of viscosity
solutions [11,10,12.13,14]. We will begin by recalling certain usful notions
of derivatives.

DEFINITION 3.1, Let f: X — R be locally Lipschit: function.
(1) The superdifferential of [ at a point & € X 15 the subset of X defined
as

(5.8) 0* () = { ¢ € X;limsup [”y-’ "“"”'@‘”‘"”] <ob.
y-2 iy - =,
(1)} The subdifferential of f at a pornt & € X is the subsct of X defined as
e e [f) = f(2) - (€ y— )]
{(5.9) f(Z)—{CEX.llljing[ TR j 20}.

(1ii) The Ciarke generalized gradient of f at @ point 2 € X is the subset of
X defined us

(5.10) ofiz) = {C € X: [(=:iv) 2 (¢m), Yre X},

where fS(z:v) denotes the directicnal derivalive.

(5.11) fixiv) = limsup flytto) - fly)
1.0 Y- t

ProrosiTioN 5.2. : Let f: X — R he a locally Lipschelz furnction.

Then for any point x € X,
(i) the sets 0* f(x), &~ f() and Af(x) are closed ronver,

(5.12) (i} =3 (~filz) =0t fz),
(5.13) fa) = 8= f)(2) = Af(z).
(5.14) and (i) G f(z)(JatN=) CAfie) S X

We now return to the Hamilton-Jacchi-Bellman equation (3.1} and
define generalized sclutions.

DeriNiTioN 5.2, ( Viscosity solutions ) et V10, 7] » X -~ R be
g locally Lipscheiz function. Then V ors called 2 mscostty subsolution o the

equation (1.1) 1f for cach (t.y) € (0.T) « X,.

(5.13) -+ Mty -6 <. Y. e dtV(ty)
and viscosify supcrsolution if for eack (f,4) €{0.7) x X4,
(5.16) ~C+H{Ly, -8 20, Y((.E e Vit,y)
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IV satisfies {5.15) and (5.16) then it is called a viscosly solution.

DerINITION 5.3, { Clarke generalized solutions ) Lef V: [0.T) x
X — R be g locally Lipschit: function. Then V 15 colled a Clarke generale
ized solution to the equation {5.1) if for cach (1, ) € (0. Ty x Xy,

{5.17) max{~{ = H{L.y. &) (.8 edVil.y)} =0,

Usiug the continuity properties of the cost functional and continnous
dependence theorems for the state with respeet to the data r.{ and control
{7, the following theorem is proved in [30.20,16; for the control problem
(1.1}, 11.2), {1.3) and {1.5) with quadratic ¢() : X = R and quadratic
Lagrangian £(-,-}): Xyy» x F — R.

THEoREM B.1. Verification Theorem The value function V{..)
(0,77 » X). For each t € [, 1), V(1,:) is locally Lopehitz 1n X and
Jor cach € Xy V{-.{) is absclubely continuous in i € (. T). Morcover,
Vi)t [n 8 x X - R is o wscosity solution of the Hamilton- Jacobi-
Belhnan equetion and ¥y € X4,

¢+ Uty —€) = 0. for some (. &) & 3TV y.

fort e m {0, 7]

A magor open problem in feedback control thevry of Navier-Stoke < egun-
tions 18 the uniqueness of viseosity sefufton,

tor the above cluss of flow control problem~. we have the following
connection between the two types of generalized solutions. A sunilar pesnlt
for the finite dimensional case was proven by Frankowska [20]. Our case.
however, is considerably more involved because of the infinite dimention-
ality and the rnboundedness of the Hamiltonian. The following hypothesis
is motivated by a weaker result of Preiss {27].

DirFeRENTIAWMILITY HYPOTHESIS 5.2, Lel GV{E y) be the Clarks
derivative of V af some arbirary pont 1,y € 10,71 2 X1, Then

g¥it.y) = ﬂ'{é {CV(iroye B2 X (r.2Ye By, x ((1,yhe)}
0

where the closure here s the weak topology.

Tarones 5.3, Ll V: {0.7] x X — R be loeally Lipschits.
71} Suppose that V ax @ eseassty selution, sulisfes YLy € (0.7 v X1,
{5.1&} ={+Hit,y,~-£1 =0, for some {{,£) € 8Vt y)
and satisfics the differentiability hypothesis L Then V is alo a Clarke gen-
eralized selybion ond Yt g1 € (0, T x X 1.
{5.19} -{= ity -§) =0, Yi{.{ie I Vit.y)

Or the ofher hand,
(H1ifV 15 a Clavke geoeratfized solution and satisfes {519} then ¥V 1 aho
a tisrosity selufion.
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It is of tnfrrest to ymprove this theorem i the direction of remoring
the above diffeventiability hypothrsis.

Let us now consider the control problem (1.1), (1.2}, (1.4) and (1.5)
and give specific forms of the Hamiltonian when the Laprangian is of the
ferm,

1 2
Civ. ) =6(v)+ E”r'"
CASE 1 U = X ! Uncoustramit Casr). We then write
' . 1.,
& p) = (AL < B, p) - O(E) = may [m,,)_ L ;:,]_
veX 2
We pet
’-"opt =p
and
‘ . 1,
H(fﬁ.‘ = "(.45 + Bff\:,p’) -~ & ,5) -+ 5.{17.:.

I this cove the formula for the feedback is

{5.20} Uy = TV e(t)) .

When the value function is not differentiable tiien the above formula be
comes

Kty € -8, V{1, 0(?)).

where the derivative is now the in the sense of Clarke.

CASE 2: U = {U' 2 X:: {1 < R} (Constraint Casey We pow define

Nes ’] i

§ v

.

hip) = max [(p. -

(24}

~

t

Then it is easy {0 show that

Hipl for p.<R
hip) = ,
Aipl =~ !§_ forlp > K

Thus the Hamiltcnian is
HE pY = —(AE 4 Bi&ypy - B + hp).

The feadback forrm!a in this case s

(3.21} Uiy = o (=T VL v,
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where

p  iflipisR

a(p) = Vph(p) = .
i iflleli > R
When the value function is nondifferentiable we have as hefore,
V(t) = o(p)

with p € =8, V(£ v{1}} with derivative interpreted in the sense of Clarke.

6. Stochastic dynnmic programming: Preliminary results, We
will consider the stochastic control problems {1.73.(1.2) with cost given by
{1.9). Let us define the value function,

7
Vir.{) = min { £ [é(t*(i"})) + j ﬁ{fzﬂif);f"'ii}}éf] () UG TS ?} :
(6.1}

We can then establish the Bellman principle of optimaliry,

t
L‘{r.{}:izs{{é' { / L(r,v(r), U(r))dr + V(:,»gm}; reyeun’ {r,f;U}},

€2y

whera Ei;i‘dpi& T H;f (0.7 U} is the class of feedback confrols which
are progressively measurable with respect to the sigma algebra generated
by the process v{-}. For the infinite horizon case (rast functional (1.10))

this principle take the form.

Vi¢) = inf {s U AL, vy, U (r))dr + VI, :s{f}}} ;114 ezg;i‘;f‘(a,f;m} ,
V]

{6.3)
I the value function is differentiable then from (6.2} and the infinite di-
mensional ito formmla :24.15]. we get the second order. infinite dimensional

Hamilten Jacobi-Beliman equation,
(6.4) &V --H{= . -0V + %‘h{gga;%;{ =0,
with
WT. O =e((). ¥Y(eX.
For the infinite Horizon ease we goo
(8.5 - AV - H{, —0 VY = i Tr{QaIV) = O

ft is knowr in the contexe of finite dimensional contral theory [25]. that
the ergodic control problem {eost functional (1.11)) is related 16 the Hmit
prohlem & — 01in {1.10) and (6.5} also to the problem of invariant measures
for the stachastic Navier-Stokes equations{4.
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NONSMOOTH ANALYSIS AND FREE BOUNDARY
PROBLEMS FOR POTENTIAL FLOW

SRDJAN STOJANOVIC®

Abstract. New approach to some Free boundary problems, is introduced. Those
problems arce studicd first by Alt and Caffarelli {2 in the case of a potential flow, Their
approach seemn not to be pussible to extend to the case of a Stokes flow. In this paper,
the variable domain problem is rclaxed so that it Lecomes a nonsmooth optimization
problem on the fixed domain for the sumewhat singular state equation. State cquation
is considered, and the snultivalued generalized gradient of the variational functional is
studied. Here, we considered Potential How.

1. Statement of the problem. In this paper we introduce a new
approach to some Free boundary problems in fluid mechanics. Here, we
shall consider cnly the case of a Potential flow. but the same method can
be adopted for the Stokes flow. which will be the subject of the fortcoming
paper.

Consider the set of admissible shapes, i.¢., the control set
(1.1) U={neH}-11x0<u(z)< 1, ~1<s<1}.
Denote
(1.2) My ={{z.u(x)) -1 <xr <1},
and extend u € I as zero outside of (~1,1). Define the domain
{1.3) Qu={(r.y): ri<a ulr)<y<2}).

Also. let 2 5 Q, be a domain defined by
(14) Q={{r.y lrl<ae 0<y<2}

Now, consider invizcid, incompressible, irrctational flow in a finite channel
Q with an immersed ohstacle T, with shape u € U. Sc, the flow actnally
takes place in Q.

1t is well known that such a flow ean be described by the stream fune-
tion 1w = w*, which is a solution of (to fix ideas, we take flux to be cqual
to one)

Aw=0in,

w=0in {{z,0)i~a<zr< ~lor V< <al

‘ w=0inT,

w=2in{{z,2);-a<r <a}

(1.5) w,=0in{{xa. yy0< y< il

¢ Supported in part by the NSF Grant DMS-01-11794.
Department of Mathematical Scicnces. Univenity of Clncinnati, Cincininati. CH 45221
0025.
rired
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We could alse take @ = oo in {1 .5), ie., consider a flow in an infinite
channel. Then the last condition in (1.5} is substituted by the requirement
that w is bounded.

If the stream function w is known then, of course, the velocity vector
field v can be computed easily as v =< wy, —w; >.

The problemn we propose is the following:

For given g = g(z,y) € W25($), ¢ > 2, {occasionally we will not have
to assume that much} and such {hat

(1.6) g20.
(17) g - 0inQn{jz]>1}.
find (if possible} u € U {the shape of the immersed obatacle} such that, if

w*® is the rotresponding solution of (1.5}, then also

{1.8) Wi={¥u* =ginT,.

By Bernoulli's law

{19} P+ éf?u“f" = conat.
throughout the fluid (here P denotes the pressure). Hence, we see that the
requesting specifie velocity profile on the immersed obstacle is equivalent
Lo reguesting the specific pressure profile. Obviously, thisis a problem with
wide possibilities for applications.

We note that this problem is closely related to the following, by now,
well known variational problem (see [2.3.6) see also {11] for numerical con-
siderations):

Find w € H'{0)} satisfyving the boundary ronditions

we Gin {{z.0)~a< z < g}
{1.10} w=2in{{x,2};, -n<r<a}

and such that the variational functional
(L1 Yu)= [ {%Vz;f + g:*I{,i )g,}:’
4

i minimized. Here Iy is a characteristic function of the set D te..

(1.12) mz;—.{é gi;ﬁ

The reason to develop the methad introduced here is that it extends
to other equaticus for whirh there is no known analog of J (for example.
Stokes problem, to e distiserd in Part 24,
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2. A relaxation of the problem. In thic section we assume that
21y g€ HY(Q).

Suppose that there exists an v € U7 such that corresponding u* solves
{1.5,1.8). We shall say then that u is an ezact control. Now, extend u?
from Q, to Q a< 2":

y w_ Jw* on QQ
(22 : ‘{o on \Q, *

it follows

LEMMA 2.1, ffu € U s an caxact control. then 2% € HY(Q), and it s
e solutien of the following elliptic boundary calue problem (urth singular
right hand side)

Az¥ ==&, m Q)

f=0in{(z.0k~a< x < a}

2 =2m{(r.2);~a < <a}

(2.3) (Yr=0m{(da.y)0<y< i)}

where &, € H™'($)) 1s @ measure groen by
(2.4) Suly) = / goder.
I's

Proof: Obviously, since by elliptic estimates w¥ is regular in Q,,
¥ € CUYQ) (regarding regularity near corners see the hegining of the
proof of the Theorem 3.1), and in particular 2> & H-(Q).

By the Trace Theorem,

f
le.(e)] = [ fr o0de| < llolar, o
(2.5) < "'u“.qnlf'(n,\”‘f’”ll‘,’ﬂr

So. in pasticular. £, € H~ ). Also, since ¢ > 0. £, is a measure.
Now, more explicitly. (2.3} can be written as: Find = € HY§) such
2 / ]

that

=0 {(r.0):~a < r <a)
(2.6) M =2in{{r.2)i-a<z <a}
and

(2.7} -/v:tw:/ gode
Ju 1.
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for all ¢ € H-{Q) such that
(2.8) ¢=0in{{z,0h—a<e<alu{{r.2}-n <r< a}.

‘Fo check {2.7), we note that by the maximum principle, a solution of
{1.5} iz positive. Hence {1.8) and the boundary condition in {1.5) imply
that

Huw®
23
2.9 E»

LS

=-ginly,

where 1y 12 the exterior unit normial to #1,. Hence,

—/T:“-?-,:;:.- Tu Tg -
bt i1,

‘ 3 4
@) = [ {‘-\H“};-—f B e = [ soin
Ja, a0, . r.
which completes the proof of the Lenuna g

Leamma 2,20 Lef 2% be g soivhan of (2.6-2.8;. If & happens that
28y =0, then 2%n, 1% o solution of (1.5.1.5), ve., % is an eract control,

LN

Proof: 1 the next sertion we shall prove that =¥ is regular enough
so that calenlations perforined here are legitimate, More precisely. by (3. {:}
below, it suffices 1o assiine that o £ ({1}, We have

/ gode = — / T:¥.Typ - T
T Ja, e,

= / fAye -?-/ (A%
Ji, i,

£ J as¥ d
211) -./asz, 24 f:":rz‘,n 3 2

Let v be exterior to @, and lev

PRLTE-1 g
< ==z isz\s‘:.,

. R
{2}.2) :J +$27 By :{-

.

Then {2.11) luplies that

) j . /4 iﬂ bR TR £ § .
(2.13) j gide = ] f : % };ag, we € CligY).
T.

v
So,
L inf gau L524
(214) ST T
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We observe that (2.14) always holds for the solution of {2.3).
Now, if 2¥|;-, =0, then :¥q\q, =0, so that Q’;—;"—' = 0. and then

a:u.e:t
{2.15) g == onT,.
Le.
(2.16) ¢=iV(z*la,)]onT,,
i.e.. (1.8) holds. s

Lemima 2.2 motivates the following
DriNitioy 2.1, u™ € U is saud to solve the relaxed shape optimization
preblem 1f the corresponding =% defined by (2.3). is such that

(2.17) ®(u) = % [ (=*)do

is minimized. i.e.. tha! there coists an u* €17 such that

(2.18) : i) = Eielg}(b(u).

Of eaurse, an cxact control is a minimizer, i.e.. a solution of {2.18). On
the other hand. a solution of (2.18) is an exact control provided an exact
control exists, '

We do not consider the exact controllability. Rather, we shall study
the relaxed problemn introdueed in Definition 2.1,

3. The state equation. It will be convenient to state the regularity
theorem for the general boundary value. So let w be a given function on
Q such that =¥ = v on §;Q Z 8Q. We assume that the boundary and ¢
are sufficiently regular {see "12] for details: also we shall give some details
in the case of the boundary and houndary values in our case). For any
2 € M) we define [jz] pegzqy as

. def . ey e PPN
(3.1)  |js" e = ins {_m >0,-m<:<mondin K {Q}},
where inequalities in [73{Q) are defined in eg. [4]. Alsuowe dfne
s Ldaf WIS .
(3.2 u';y;[,} 1 E DO Ay > o),
We have

THEOREM 3 1. For any u € 7 the stalc equation (2 3} has a umqne
weak selution Lot q be such that2 < g < x. Ifge W2 thaa

(3.3) | e WIS CF AT,
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and the apriori estimale

3 ="llwrnny £ e (1 flulicor-1.,) {iglinsa@) + fiviiw o) -
holds. If i additton q > 2 ff:fs also

(35 " ewiny S e (1t liufler scoan) (oliwrsny + v Lwony) -
Morcover, if g € W3S(Q), and (1.7) holds, then (see (2.12))

(3.6) WO, S e TR (00,

. ead the apriori cstimeates

(37 s e € e (u psearsy Jyllw o ol 2ains)

und

B s s mnonigs)) S
(1.8} e (* fuligs (-1l gigﬁisﬁlw;msffﬁ’ﬁﬁ"-‘-:m;} .
hold.

Proof: Since §, € 1) existence and uniqurness of a weak solu-
tion =% of (2.3) is tvial. Also, since :* is harmonic in 24T, it follows
that z¥ € O™\ I,). }‘m\ words are needed here due to thr presence of
corners in §1. To prove regularity of ¥ in the neighborhood of corners, say
in the neighborhood of (~-2,0). one can extend =¥ in {2 < ~0,0 <y < 2}
as % by the formula

- gt | {=Za—-r.y} fr<-a
(3.9) Siay) * ] 2 ¥
R R ifr>-a.
Then since 2% is continuous on {r = —a} and i, = 0on {r=-a} it

is elementary to show that 2% is harmonic across {r = —a}. Indecd, It
BA)= BiU(B.(A)N{r = —a) uB2 ¢ {) < y <2} be aball contered
at A € {& = —a} with radius p. Here, B, = B, {A)7 {» > ~a} and
By = B,(AYn{r < —a}. Then.

[ 2’;;;;:/ .?v?a;+/ FTAe =
S H#,1A) 48 #,;

{3.10} / T :} dy =,
{r==ainB,is1

for all p € CP(B (A} so that - 2% 15 harmonic across {r = —~u} as clamed.
Henseforth ..'* is as tegular in the neighborbnod of (-4, 0} as the {extended)
beundary data is. In particulas. in our ense ¥ = 0 there, so that (33)

follows
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:
¢
4
=
(424

Set
(3.11) g=t—2z"

in {2.7). It easily follows
/!VZ"I2 =v/ g(t,"—:“)dn—/Vz" By
a r, o}

< </[’ gydcr)* [(/ l_f.'lda)é 4 ( r‘(zu)gdayl
(3.12) ‘f'I/nV:"-W!,

Now since z¥ = (2% = v) + ¥, using Paincaré incquality. we have

¥l < e (IS (2¥ = ¥lizany + i)
(3.13) < c(IV:"liLaeny ~ e llm)
Combining (3.12.3.13) we got

210, € 00+ ullesai- ) [Follmea (e, + 1))
(3.14) 4“’"5"IEHl(nﬂl""”H'm) + ‘?““"iﬁmm‘
In (3.14) the inequality follows from the proof of the Traze Theoreny (see

e.g. [10). or [8]). Indeed, one can see ({5), p. 132) that for 1 € ¢ < o one
has

4
21 L LU 2 JSOIE
(“-I‘J) : ‘-J";,q(r_) 5 ¢ (l + fq“”(,‘u ‘(—1,11) ”' 'Hu':.q;g_,-
which implies

) ) ) -
(3.16) fe¥iiparas € e (U= flufeonar ) * 1 liwo 2o,

JFrom (3.14) we easily conciude that (3.4) holds for ¢ .- 2.
"

Proceeding, (we assume ;-1 L= 1)

1€uloN < Wgllpan eliperry

1 . °,
. ( I T
(T+iueon o) g o an (D4 il el g

Lec
3.7

2
1
3

j =c(1+llufeany o) 19" weao lleineay

Sa. &, € (“'!""(Q))- there X* reprecents the dual space of the space X)

and

{3.18) i ey el =Tutea s o) wen,
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We know (see e.g. {1} that £ has & representation

(3.19) €)= [ Yoo+ fivs + 7.
forsome ; € L900),i=0.1.2, and

2
{333} f;'ﬁsf%gwt e‘m}}' = Ei%f:}iu{m

i=l

Now from »liptic regularity {see [12, p. 179) we have

Ly
(3.2} dMwren < (Z Hfllzes i worom+ %Ei"'ﬁf;:;s::) .

el K

cFrom (3.18,3.90.3.21) and since we already proved (3.1} in the case ¢ = 2,
we conclude that (3.4 helds, »

To prove (1.3} we recal] fsec e (1 p. 103 that i ¢ > 2and f
2" € 000 &0 in the senze of 17(£2), then k

=0

2
{3.22) ssssup st <o (Zii,ﬂ‘ffmn: - S“ilﬂzfs‘:) .
o

Hence,

ess 5§P (=" = fi"lvem) <

2
{3.2% <e (Z Welgray + =l 4 " le=on ) .
i=C

and sinsilarly for —2% 4 {2* [l xan-. This cacily implies {3.5).

Now, we shall consider further regularity of :%, and Vg, Sinee
the singular set i on P, we expeet higher regulatity in the tmgential
direction. To prove that this is the case we flatten the 1, frst, sinee then
it is easier to differentiate

Define v, g and & by -

{3.21) rir oy} = 2y + u(xh).
{3.29) Fr.y) = giz y+ o)/l = u*(2).
{3.26) flrom = gleoy+ua))

and operator L by

{3.27) Le = Av v toptus ¥ = Qepu: = G4,
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Of conrse, L is uniformly elliptic, since the matrix

R 1 1 -y
(3.28) MJ-[_W ,+@]
Is positive definite. Indeed.

(3.29) 1568 = (6 = uba) = €.

So, if ¢ is such that ‘ue] € ¢. then if (€} < &£'€;] then

2 1
{(3.30) (&1 = ub2)" > 35?
On the other hand if {£,] > 5,%5:’;] then
(3.31) gL
At 3o 4c2 [

So, it is easy to ser that if we take o = min {$, =) then
(3.32) k& > alg .

Let, also, 2y be the map with the image Q giver by the fermula

(3.33) S e,y ={r g+ ulr)).
Then,
(3.3 A:¥oZ, = [,

and since |drtDZ.| == } there DE, is the gradient mztox of the map &, so
that |det DZ,. | is the Jarobian)

(3.35) (LU)3) = (A% )

Henee

ey = [ gede
S

= /U','.r. u".r‘):);t::'. fl(.‘l':l)\:"l -4 U""\‘:'}{!l'
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in the sense of distributions. Since the singular eet is now on {y = 0},
we expect higher regularity in r direction. To prove thar, we want to
differentiate {or more precisely, difference) equation {3.37) with respeet 1o
. Somewhat more precisely, define the standard difference operater (in
the r-direction) é} as

(3.38) {(Bu)ir)=

Fleen from {3.37) we get
(3.3) (L) (AL,3) = £(oL,3).

We shall discnsy n same detatls only the right-hasd side. We have

ity = [ aely e
P

{1.40) = —/ (fla) ddr — -/ Fogdr,
o=t {y.m

=
as b — 0 We conelude than
(341} (Led (i) = .70,

and hence

1347, Lyra=§ - *g;?ﬂrﬁ": + tyizrr,
where
{143 Lyt = Aw o+ (u-¥u,, - Zuguz, =~ Tup ety

and where

{349 Ll = [ Cdeydr

T

We alwerve <har the differencine porforme d abeare i legitiat e

. -
L . el
{4451 £ -t Qg upe = Uytrrr B §\‘~:'1 ?

;
Indeed, g < W L and also cheerve 8ot wepy £ 47 and v 17

st : . . . .
;{31 B Alsg,since L nasthesarwe printipalpart o~ L £ 7oy
elfpric, as wel',

Now we ean eonsfude froan (3403 55

316 e S,
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o
an

This iinples, by the Trace Theorem, that veli.z0) € W"fﬂ. so that

(3.47) oliy=uy € W49,

We observe that because of (1.1.1.7), the precading analysis is true also
i the {y > 0}-nesghberhood of (the pre-image of ) (==1.0). so that (3.47)
hodds up 1o the initial and terininal paints of (the pre-image of ) I',,. Elliptic
regularity then vields

(34%) eliyse; € W

Unfortunately. we can not ¢laim the same global result for v{(, <) because
of the nonsmarthness of A0\ Q. ). ie., we have to localize in {y < 0}.
‘This concludes the proof of 13.6). Now, regarding estimates (3.7,3.8) we
have

e sty

hs oo S ellivlla: o) ”"'{y?_f')"W?.a(g:‘(n_))
(3.49) < e Ubiasc-cn lgitwesns fHolly o)
and similarly (afte lacalization in {y < 0}) for 2¥ ™, which completes the
proof of “he Thearem., [w]

CoRroLLARY &1 If g € W7 5(Q) for some ¢ > 2. and of (1.7) holds,
then 2% £ (-"','I':,m ierlS0) and the following apriori estimate holds

(356 Yl="ie e g S etedinlmean i we e fiEliwasin) .

forany ¢ > 0.
Proof:  Trom (3.7.3.%) and by the Imbedding theorem {see eg. [T])
we have

tatert L int.
ST e 1 e gy 0p) S
R L ]
(3.5 < Cqt. Hu{i,p;-l,x vl yllw, ITITY "»‘.y““,, if.’!‘-) )
This impiies (3.503. a

COROLLARY 3.2, If g € W2 Q) for some g > 2. and if (1.7) Aolds.
then

i3.52) 2: int C(‘:L‘.l—-g (f:).
and the folluwsng aprior: ¢sfunatc

{133 533; :mi's‘..‘ "3(1_") S (Hunnw-“ " ”il”u"'-‘.‘hjﬂ)- ,'W"sz nm)
; (T,

holds.
Ihe inrerest an this Corollary is due to the lack of (03 €2, )-glebal
regularity of 2™,
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Proof: Let 7 and v be unit langent and unit normal to I',. More
precisely. set

': e I
{3.54) i T m(l&f}
and
3.55 = —— 1)
(3.55) ve e 1)

it is elementary to compute that then

4

-

. u +
?.&6 :&’in: T B L R b ’nf,
(3.56) Y VIeu? ' Vidu?”

But since, by Theorens 3.1 22" = :¥¢7 and (also, by Lemma 2.2) 2% =
g+ 22 on Ty, wi have

HERE

o H .
35? :#.mf ( — 3 . + z-,. -re )] .
{ } P ‘ V{‘+ w2 \f——?‘ I§ ] .
‘The Cotollary follows due to the Q- global regnlarity of 2441 and by the
hnbhedding theorens. Indesd,

! 1
I ¥ o L u.ert N > {? 4 2 eﬂ} H

VT4 VI—w? P ees-d

< ellullyr- s;{ﬁ ey edrs } “;{r ]

< eltullmsgeray 124 % ‘ihh:n y = Mollwaema)

b (H?;}SH-‘A‘-E&}- Hothwaans e lwe qgn.} .
{3.08) :
o
4. Existence of a minimizer. In order to claun existenee of a min-
imizer, L., existence of a solution of the relaxed problem. one needs com-
paciness. QOue way of introducing ~ompactness would be to bound the set
of admiesible controls to

(4.1) Uy = {ue Ulmllny 1) £ b}

where b is some prescribied (large) positive constant.
ProvosiTioN 4.1, Let g € WHUD), for some g > 2. Then, there
ermsts an u* € Uy surh that

(4.2 P’} = fgig:@(&}‘
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~ Proof: Lel (¢n)n=:2,.. C {7 be a minimizing sequence. By Theoremn
1. we know that

(4.3) H=" iy + " leoin, < e
)

By taking subscquences, if necessary, we can assume without. loss of gener-
ality that there exist u* € Uy and 3* € HY(Q) such that

(4.4) u" —u*in H?(~-1,1)
(4.5) 2% — 2" weakly in HY(Q)
(1.6) 3w 2 in C(D).

Recall that

(4.7) —/V:“‘-V;:/ gede
n ru.‘

for all ¢ € HEQ) such that #'gyz0n = #(y=2) = 0. If, in addition,
¢ € CH) then it is easy to see that

Lt 24 =3

(4.8) ' Iim[ g;:drr:f gede,
r .

vn u

Heunce, (or suchi 2 we can pass n — no in (4.7) to conclnde

(4.9 —/V:'-V;:/ gpde
0l T.e

for any » € C1(Q) such that ¢ iyz0 = #l{y=m = 0. But then, by the
density, (4.9) holds for all ¢ € I} (Q) such that ¢y 20y = Ply=2y = 0.
We conclude, by uniqueness, that

(4.10} =t

Now since
(4.11) ¢wg=—f (z*)*do
r.

{4.4,4.6) inuply that

(1.12) Lm ®lu,) = ().

2 -

This completes the proof of the Proposition. N
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5. Differentiability properties of the variational functional §.
Qur goal is to derive information about the mullivalued generalized gra-
dient of $. To make our results more precise we shall introduce several
definitions.

Let @ he a real-valued function on the subset I of the Banach space
X.

Derixition 8.1, & s said o be directionally diffcrentiable af u € U
if the limit

. . P(u+Av) - $(n)
(3.0} is?:} —5

ersts for any ¢ £ X such that u+ v € U, for small encugh 3 > Q. If that

is the case, then the himit i 75.1) is called directional derivative and if is

denoted by $'{u: v}
DErINITION 5.2, & s said 1o be subdifferentiable ot v #f there exists

en f € X° such that
5.2) LAUHOP-F (]

foreveryv & X sech that u-t dv 8 U, for small enough X > 0. Set of all
such s is called subdifferential. and # is denoted by 8.$(u).

DeriniTioN 5.3, @ is seid to be superdifferentiable of 1. of there exists
an f € X™ such that

(5.3) S (u vy € fv)

Jor every v € X such that w+ Ar € U, for small encugh A > 0. Set of all
such s is called superdiffecentinl, and i i denoted by 8 3(4).

If & is both sub- and superdifferentiable at v € in#{[7}, and moreover
8.3{u)Ns d{u} £ 4. then . {u)N I P{u) is a singleton and § is Gateaux

differentiable.
We go back now to our problem. Of course. X = H(~1,1), U is

defined in {{.1}.
Proceeding. define the adjoint variable 7%, #s 2 colution of the {adioint)
equation

Apt =g, in D}

PF=0in{{elh~acr<alu{{s.dhi-a<r<al
{5.4) Pi=0in{{te. ) 0<py<}

wihere 1, € H™YH{Q) is a {signed) measure given by
(5.5) () = }; Mpde.

Obviously, {3.4) is the same type of squation as {2.3).
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In this section, as before, z¥-*%* = 2¥|n, and Y™ = z%|g\q,; also,
below we shall use the notation p**7* = p|q, and p*'™ = }¥|n\q,. That
is essential in this calculation. since z* and p* are nof differentiable across
the [y.

Lemma 5.1, Let g € W29(Q), for some q 2 2, Then

(5.6) PUE e WHIQ), T € WL (2 ).

and the apricer: estimales
6.7 1" llwe wan € e ullgy-y oy lollvseay Ieliwaam) .
and

“}lu'mr"W’"(fﬂ\ﬂu:lf\{yz(}) < -
(5.8) < efe, ullmaio iy gl s Jleline o) -

hold.

Proof: Comparing (2.3) and (5.1) we see (hat the only difference is
in right-hand sides. Namely, in (3.5), #* ¢ W*%(Q). Revertheirss, for
example, 2% € W29(Q,), and since n, depends on z* only through the
trace on Iy, and since :¥ and 2% %' have same traces on I, we easily
conclude the praof of the Lemma. a

We shall use the vsual notation: ©* % el 50y, and 2~ i ~vL,ca.
So,v=1t -y,

Now we are ready to state the following

THEOREM 5.1. Let g € W2, for some q > 2. Then & is direc-
tionally differentioble al any u € U such thal u{x) > 0 for --1 < r < 1,
and

@'(u:t)-
M 'I
=/ (:n(:: (LI umr ~) /1+un+( u) _____ )dl‘
-1 ’l-e-u'2
. ; u'y’!
(5.9) -(-/ ((gp¥ " )yt = (gp* "), 1 7 ) de +/ A zodr.
I A PEA 7 ) W

Moreover, if
('J '0) Y. uv"!_‘_(qp bz;l tl‘t+(gp'| rr?’,y g.¢. u'-'-'{"l)
then @ 15 sub nﬁ(.rrn!mble at u and

4.9 () -
- [(:uz;.int + (gpv._t‘m)b) \/) + ";;': (:u:;,c_-l - (gpu_u'r) ) | /l + “,31
4

- (e et o)
(5.11) BB, rADL)] C L (=1,1).
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On the other hand, if
(5.12) 220 4 (gpUinT), 2 UsE R 4 (gpttTtY, ae m(-1,1),
then @ is superdifferentioble al u and

& Plu =
[ ) VT (55 4 0570,) VT ]

- ("‘ﬁ% (=) + .‘?2’“})
(3.13) &0 (). ré B © L%(=1,1)

Proof: We attempt to differentiate @. To this end, for given u e U
and a suitable direction v € J/3{~1.1) (suitable in a sense that u=Av €l
for small encugh A > 8) wr try fo compute the {one sided) directional
derivative &'{1; v}, Using the regularity result {Theorem 3.1, and Corollary
3.2}, we compute
By A} - Blu)

A

— gL Ao T __/ a2
inﬁ,ﬂ (/“h§ Ydeo r‘(‘ Yide

i 8 i
u'r
= g et - W1+ 0+ () e )ff,r -
_/. ( & }v, ¢ V1= u?

1

{5.14) +§l§g§_§/ {{*ai-h ¥ - a‘} ) do

&'{u:r) = im
A

Before procesding with the proof, we shall need the fllowing Lemna Ime
precisely, its Corollary).
LenMa 5.2 Under previous ascumphons an u, and o, and for any

a < 1 the foelloving estimate holds
{5.15) I+ = 2 flerepy € €A

Proof: Wr need to compare z%#*7 and ¥ This is diflicult to do in
the original domain {2 since {singulsr) right hand sides of the equations that
they satisfy act on disjoint sets, so that there i3 no obvivus cancelation. So,
the idea of the proof is to map the original domain into differsnt domsin
in such a way that the cancelation does take place.

Let, as before, 2, be the map with the inage {2 given by the formuula

{5.18) Eulr.p =z, y+ ule)).
Then
{3.17) ZE,y) = (r oy - ulz)).
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and (set A = (2,y))

(5.18) dist (E7,.(4) = =71 (1)) < ed

Now censider 2442 and ¥ defined as
FHW = A T

(5.19) M=ol

and operators Ly and L., defined by

(5.20) Lyw=Aw+ “’yy(ur)? = 2wty - Wyleg,
Lygrow = Qw4 uy (uy -+ Arz)? = 2wy (Ur 4 AVp) = wp (v + Avy) =
(5.21) =T,u A [wy,l?u:t'_- + /\1,';) - gy e = u-yv”] .

Then 39+AY — 34 satisfies the equation

L, (zu«-h - EI;) =4 -

(5.22)  A[EFM(2un, + M) - 230, - Bty ]

in 71,0 NEZNQ), where

(5.23) e / (Gy = Ca) b
Jiy=0}

and wheee

4
.

Gi(r, 1) % gle g+ u(z)+ M ENT ¥ (w(z) + A (02,

(5.29) Gatr. ) E gla,y v ulz)/T+ (F ().
Observe that

(5.25) | G ~ G-"“wr-c(s;ihmm::’m;) Seh

Now since

15.26) dist (A (Z70, (). (E71)) < A

and becanse of the Holder continuity of 2¥#2% and ;% we conclude that

= fey st4dy s ~
(5.27) e T2 n(JU(U 71, NE00n)) < eA

Then (5.22.5.25.5.27) imply that

[ =1 —
= nnzlten

(5.28) jfzedtv '.~'"||Cc (_.__.____) < ¢A9.
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Then we have (set A = (z,y))

txx-}iy{‘g} - =t:{.4}i
= [ (EL ) - 2 EI )] <
S|P EDLE) - 2 (EL) ] +
+# ELA) = 2 ETA)] <
{5.2m) A% 4 ex¥ = e2".
In {5.29) we also used Holder continuity of 2. Thic compleres the proof of
the Lemma. o
ConotLary 5.1,
. 2 JUdAT P -
(5.30) Iii‘f* j (: ) de = 0.

Proof: Takea > 2 5 in the Lema, Then

% o AL .35I1
C hetd

A

(5.31) Lt <M, 2=2-1>0.
in]
Now, we can proceed with the proof of the Theorem. We compute the

Tast term in {5.14).

inn—/ () = (%)) do

=I§Y§:i‘ r.{:“**" - %)z éc—‘%ﬁs;;gf (v - *‘} de
- i} fn{zw,, e

=i ?fli{ ( Lm??’“‘f" - ff ' ﬂ?“«*«)

w'e

1
= /s (g™ ="y o™ = (gp" " Yyv ") do "’/ LV el
(5.32)

Now from (5.14,5.32) we conclude that @ is directionally differentinble, and
that (3.4] holds. Farthermore. if {3.10) holds. then

&luir) =

1 4
f_—_— vy
= SEpRA Tyt L g W L i ? e ) Ir
[.3 ( 7 ¥ }\“ 3 J1 1+ ‘13
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o'y

1
u.erty 4 _ % ingy | - U]
+ /r (tgp" **)yr* ~ (gp* ™) v" ) do + f_ Ky Sreiad
- 33) S /1 o (__l_l:__ ((zu)2+ u))l s
. LU \Ara »

for all
re E(:uz:,int + (gpu.ir.()y) \ /1 + ulg,
(531) (:h:;l et + (_QP" ozt)y) \/’]_mj .

This proves that @ is subdiffercntiable at » and that (5.11) holds. Simi-
larly, one can consider superdifferentiability of . So, the Theorem follows,
D

6. Remarks. The above suggests the numerical algorithm {the strep.
st descent method) for minimization of @, i.e., for the numerical solution
of the relaxed shape optimization problem:

Chanse uz € U. If u,, € U i already known. then u,4y i determined
by:

e compnte 2% as a solution of (2.3).

e compute p¥* as a solution of (5.4);

o if (5.10) holds, comrute an vp.q such that

(61) Uy 41 € (!I" bl 13 4’1_1 (6.0(% ))) n' I, pn > 0,
and if (5.12) holds, compute an , 44 such that
(62 eyt € (s = pa A1 (@ O )) N T, py > 0.

Here. A is the isomorphism between I13(—1.1) and its dual. So we see that
it would be much better to work on Hj(=1.1) instead. since then 4 would
be a second order operator — 2";‘2:’ instead of the sixth order operator.

I neither (5.10) nor (5.12) holds, i.e., if @ is ncither convex nor concave
at the point u,,, then it is more delicate to determine the steep(est) descent
direction.

The actual choice of u, in (G.1) or (6.2) is an interesting question.
Somewhat forinal considerations suggest that the following rules should be
adopted:

e if (5.10) holds and . ®(u,,) > 0 a.e. in (~1,1), then

(6.3) g1 = Uy — paA” ({15, B(ua)), pr. > 0;
o if (5.10) holds and 0.¢(u.,) <0ae in (~1,1), then

(64) Upay = M = pp AT (B B(un)), ps > 0;
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o if (5.12) holds and 8 ®{v,,} 2 0 n.e. in {(-1.1}. then
{(6.5) Unsr = Up = pn A”1 (r8°B(u.)). pn > 0;

& if {5.12) holds aud *®(1,,} < 0 ae in {-1.1}, then
{8.6) Unpt = U = p AL S(un)), pr > 0.

One can show that if 2 is a Jocal minimizer for & then (5.10) does
hold. Also, we observe that in rerms of Clarke's nonsmooth analysis (5.34)
implies that (if {5.13) hold>)

€7 8d{u) D 8.9(u)

where 68 is the generalized gradient of ® {olierve that @ is nonsmooth,
te, 8@ is mullivalued).

Finally. we pote that the method introduced here is an unexpectad
follow-up of the resenrch in the completely differ-nt context {electropho-
tography, see [4]; see also [8)). The difference is that wn '4], instead of (2.3},
the stats equation 1 {up to noncesential details)

A=Ip inl
t“=0in {{r.0h—a<zr <o}
H=tinf{z.l)~a <z <0}

(6.3) 2 =0in {{=e.y):0 <y < 1}

where D, is the set enclosed by T, and the functional to minimize s,
instead of (2.17},

(6.9) Wiu) = % /; (-é—;;;—)*da.

Observe that in {(2.3) the right hand side. Le., the measure &, v, essentially,
“derivative” of Ip_, theright hand side in (6.8). On the other hand in (6.9},
% iy under derivative. So. in the final balance those two problems have
the same level of smoothness {whirh happens to be a kind of Lipschitz
eontituity}, and hence, the analogons general ideas apply.
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COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THE
FLOW IN AN APCVD APPLICATOR SYSTEM

GARY S. STRUMOLO*

Ahsteact.  Application of Atmaspheric Pressure Chemical Vapor Deposition
{APCVD} to the production of costed glass is addressed in this study. Several loy-
ers of thin films are deposited on the surface of the glass as it moves undemncath the
APCYD sapplicator system at high temperature. A memory effect in the form of filn
thickniess streaks. corresponding to the lovation of the inlet holes located upstream in
the upper monifuld feed channel, is evident on the glass. This nonuniform film across
the glass causes & color variation of the coating. Effective mixing of ths gas streams
is required to treat the hole memory problem. However, s premature reaction it to be
avoided. Optiinum design paramersrs to corrsct this problem include the geometry of
the applicatar and the sensitivity of the flow fisld to boundary conditions is of major
intsrest. The Computational Finid Dynamica (CFD} simulation and analvsis package
FIAE ix ured to predicr the fiaw. The flow of gases involved is treated as that of a
steady, viscons, incompressihle Buid. Resnlts for both two. and three-dimensional cases
demonstrats that the deposition process can be improved by injecting the fow at an
angle ronnter to the dire-tion of glass moticn. and that CFD techniques can be suc-
cesefully used to predict the flow behavior of an APCVD applicator system and help
optimize its design.
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i. Introduction. Atmospheric Pressure Chemical Vapor Depositicn
(APCVD)applicators are used in the production of thin-film, coated giass
products like architectural glass where, for example, low emissivity thin
coatings such as tin oxide are applied to the interior surface for the purpose
of reducing the heat loss from buildings. They can also play a significant
role iu the development of automotive parts such as car windshields (thin
films sandwiched in laminated glass to seve as transparent heaters) and
sidelights {(privacy glass with solar load reduction [2C-30% transmission)).
The design of applicators to deposit these filins is crucial to the quality
of the end groduct. In addition, APCVD applicators may be employed in
tandem to lay down a sequence of coatings. An effective APCYD applicator
systern must keep the operation of adjacent applicators independent of each
other.

Presently. many on-line glass coatings are performed using powder
spray applicators. This process is open to the atmosphere and. therefore,
susceptible to air eurrents leading to imperfections in the final produet
One of the problemus associated with this process is the mottle/haze cre
ated on the tinted glass product. On the other hand. APCVD applicators
arc placed inside the tin bath where gas currents are minimized. In present
APCVD applicators design, the deposition gases are fed through a narrow
channel at its lower exit; this is shown schematically in Figure 1.1. The
glass ribbon underneath is moving at a speed of 400 in/min (1.169 m/s) at a
temperature of about GU3“C(1120°F). The gases are then extracted through
two exhaust manifolds positioned at opposite sides of the applicator. The
exhaust design must remove reaction by-products without inhibiting the
reaction or interfering with the reducing tin bath atmosphere.

In the architectural glass example, a tin oxide/silicon dioxide four-layer
stack canld be used as an interlerence filter to reduce the color fromn a thick
tin oxide filra coated on top of the stack. The tin exide reflects heat, while
the four-layer stack underneath suppresses the unwanted colur of the tin
and acts as a passive diffusion barrier to insulate and protect it from the
soda lime glass. Any non-uniformity in the gas flow across the glass ribbon
would lead to film thickness non-uniformities that. would become evident
through a dramatic discoloration on the glass surface. With the APCVD
applicatoss heing considered the velocity field retaing a “memory” of the
holes corresponding their locations upstream in the feed manifold. The
effect of the applicator feed holes on the applied coatings is evident by
concentration "peaks”. as depicted in Figure 1.2, Tt is difticult to erase this
hole memory effect if the mixing process of the gas streams is inefficient.
However. maintaining a siinple and yet robust applicator system is essential
to the manufacturing process.

Computer modelling and simulation of APCVD applicators 1s attrac-
tive. since it is cost effective. versatile and flexible, The result ix an en-
hanced ability to visualize the flow and monitor gas mixing within the
applicator environment, as functions of the geometry and boundary condi-




COMPUTATIONAL FLUID DYNAMICS ANALYSIS 209

air
exhaust

moving g'ass surface

Fie, 1.1, Sebeman: cepreeafalen of o e’ APCVD cppticslor sastem
A Fe) 1

ticns. through a variety of flow parameters such as velocities, temperatures,
ete. The primery objoctive of the present study is to model and simulate
the steady, viscous, incompressible gas How in a APCVD applicator sas-
tem. The Computational Fluid Dynamics (CFD) package FIRE ix used for
this purpose. Two and three-dimensional modeds are investigated,
Knowledge of the How field within the applicator is necessary to allevi-
ate the problems outlined earlier and suggest possible design modification:
mainly to climinate any deposition hole memnory effect. improve the film
thickness uniformity across the ribbon width. reduce haze due 1o gas phase
nucleating particulates, and generally iniprove fili deposition efficiency

2. Process and apparatus description. APCVYD is a process that
combines Chemical Vapor Depusition (CVD) with a conveyor operated fur-
nace ut atmospheric pressure. It originated in the micraclectronics industry
as a way to manufacture printed cirenit boards. Taday, it is prineipally used
to produce thin films- for diflrent coating processes without the use of a
vacuun. {t i considered to be a production-oriented. cost-effective means
fur providing high quality coatings {Gralenski, 1284). OVD usually involves
the delivery of more than one gascous chemical to a beated surface where a
reaction ocrurs. The reactinn can alse happen hefere the chomicals reach
the surface, although this is not often desirable. Reaction by-products are
vented out through exhausts chimneys. Multipl: contings are also possible

1 The thickness of these films is on the order few hundred Angstroms (1 Angstrom
= 1= m}.
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throuzh furnaces supplied with multistage APCVD systems.

Eazh APCVD applicator systen consists of a gas feed and {wo exhanst
chimneys;  twe-dimensional reprecentation of one being studied is given
i Figure 2.1, It is designed to distribute the mixed gases across a 5-ft
wide glass ribbon passing nunder the coating applicator systemn. ‘The gas
feed side consists of ar upper manifold in the formof a 0.5 in-wide and 2.5
in-long chiannel that contains the gas inlets, and a narrower luwer channel
0.125 in 1o width and 3.0 in. in length that operates as an injector with
an exit in the deposition area facing the glass top surface. ‘The fiunction
of the injecror ix o effectively deliver the gaseons chemicais to the heated
glass

Ther~ are hwo sepamate streams of gases which are introduced upstream
from opposite sides of ti.e wpper channel through twe arrays of 0.067-in.-
diarrter distzibution holes (see Figure 1.1}, The holes are dictrilLured 3.5
in. apart and positionad 1.25 in. below the top of the chanuel in the 28in,
widdle sogment of the 66-in. applicator span. The two fluids flow through
the side holes in parallel streams at 30" angh- with the normal to sach sur.
facr. creating two streams counter to one another. The pases are supplied
to the holes frotn one end of the €.5-in.-diameter horizontal wbe of the feed
chamber, The tolal flow rate is 200 liter /1nin over a 2 ft width, There is a
splite-r plate separating the two gas strcatus as they enter the upper man-
inld channel: this plate extends aiong hall the length of the channel. The
function of the splitter plate is to delay the mixing process in order to pre-
vent any possible precipitation resulting from provnature reaction bhetween




- ADA294785

COMPUTATIONAL FLUID DYNAMICS ANALYSIS 301
S
infiow cond. Tm 4
. t M
" | . 28"
oJlcw cerd. i : outflow cond.
A | :
i
; 1 . 1
18- > %
5 g
T ] : 3n {
| :
1 d L s : {
outfioweond. ke o-v.-.. ]
S — Ry T Y P Coustlte
:—: 5 v . fﬁi&gaiy
T e T T A B T e el pFGHQ
moving glass (873 ceg K}

Fic. 0.1, Tors-dimensisrel prp=esentation of an APCVD appucator spsten

the two gas streams: spontaneoys Jow-femperature reaction may oLur in
some cases,

The two gases are then passed through to the second narrowr s channel
to eventually impact the surfuce of the moving glass ribbon, Th's injectar
channel exit is 0.5 in. above the glass top surfaze. The lows channel of
the applicator is internally cooled with water. However, the ~~mperature
of the flawing gas is maintained around or over 150°C in #1- tase of tin
axide reactar. Most of the mixing between the two streans o cur prior to
the entry to the narrow channel  Av stated earlier, the glass substrate is
moving nnderncath the applicators al an approximate speed of 100 in/min
(0.169 m/a). The coating gas is applied to the glass while it iz movinginside
the molren tin hath. At this point the glase surface s al an approximate
temperature of 803°C {1120°F ). The upper sface of the applicator system
facing the glass is maintained ot a eontrolled temperature,

In the silicr reactors, the siicon dirade {$10y ) tnyers are formed from
the reaction of silane {SilTa}{8.5-1 % with oxygen (> 50 %) The reactants
ate pre-mixed (1-2% silane} in the applicator manifold and maintained at
rocn iemperature {207C). Premature reaction may occur if the reactant
temperature and flow are not kept under control. In the tin oxide reactor
the tins oxide {8n0;) lavers are formed from the reaction of tin tetrachln
ride {SuCL {23 %) and water vapor {27 H,0) in nitrogen at ahout 110°C.

These reactants can be pre-mixed before entry to the feed manifold if de

sired.
‘The two exhaust chimueys are in the ferm of two vertical rectangnlar




ADA294785

302 GARY S. STRUMOLO

channels 0.5 in. in width and located at a distance of 6.0 in. from either
gide of the injector channel. Their task i< to remove ihe by-products of the
teaction without inhibiting it. The exit ports of the exhaust inanifolds are
maintained at a controlled tempcrature and pressure near vacuum. This
ensures that the flow from two adjacent applicator systemns stays separated.
Makeup air, if nceded for the chemical reaction and/or to prevent the
reaction deposits from fouling the exhaust manifolds. is supplied from ports
located hetween the adjacent applicators. The ambient air is nitrogen wich
3-5 % hydrogen. Because of the motion of the glass. there is a strong flow
of gas along the ribbon towards the sting-out {a* the cnd of the tin bath).
The excess gas flow rate due to entrainment is ignored sinee it does not
substantially confribute the main tlow,

There are several problems associated with this process. Foreraost is
the developuent of nop-uniformity on the glass surface in the form of streak
lines, due to the hol- memory effect that is created as the flow propagates
downstream [rom the holes. Any non-uniformity or streaking due 1o the
gas flow shows up as a discoloration of the coating on the glass surface. it
is imporlant to note that in thin film technology. thickness variations often
produce appreciable variations in physical, chemical. cleetrical, or optical
properties (Gralenski, 1084).

3. Flow characteristics. Tt is helpful to have an idea of the basic
featurcs of the fluw so thar we can evaluate our numnerical predictions for
reasonableness.  The velority distribution of the flow at the inlet to the
feed manifold is considered uniform. Examining the Reynolds number of
the flow based on average velocity and channel width, we ohtain

’
R = %ﬁ 2 400,
in the upper channel: room conditions are assumed for the fuid, e, raomn
temperature of 20¢C! and armaospheric pressure. In the above definition,
U is the average velocity, II is the chanuel width, and v is the kinematic
viscosity,

‘Che low Reynolds number sugeests that the flew is well into the laminar
range. For steady, two-dimensional incompressible. isothermal flow of &
Newtonian, isotropic. hotnogeneous. viscous flnid hetween two fixed parallel
flat plates the eritical Reynolds number at which transition from laminar
to turbulent flew oceurs is appreximately 1300 (Potter and Foss, 1982}, At
the end of the narrow injector channel, the flow exceeds its laminar entry
length L. given by the relationship (Schlichting, 1979)

L.
~ = 0.04R,
H )

and ix fully-developed with Poiseuille’s pazabolic velacity prefle; Lo = 1.84
in. whereas the length of the narrew injector chanucel is 3 in.
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In the absence of turbulence, there is no effective mechanism for mixing
between the two gas streams. It is elear that the laminar mixing (primar-
ily due to moleenlar diffusion) between the two streams occur in the upper
manifold channel. after the splitter plate prohibits sny mixing that may
atherwise take place. Further downstream, we would expect two small sep-
arated regions to exist on both sides of the upper channel in the region of
contact with the lower narrow channel, where the area is reduced signif-
icantly. Massive separation is not expected in this region due to the Jow
Reynolds number. However, we expect to sec a more pronounced scpa-
ration occurs in the vicinity of the exit of the injector channs! where the
flow meets the moving glass. There should also be recirenlating regions on
cither side of the exiting jet, with different pattern of recireulating fluid
due to the motion of the glass ribbon underneath.

A vortex structure can Le identified near where the deposition oceurs,
As the exiting jet approaches the moving glass, & vortex loop forms from
the action of rhe jet velocity profile. This loop moves toward the stagnation
streamline, and reorients its path 1o diffuse into the bonndary-laver fluid.
" Inside the boundary layer the loop is stretched and its vorticity is increased
as the flow spreads along the glass,

Away from the separated {low zone, the velocity profile above the mov-
ing glass surface would be that of general Couette flow between two parallel
flar walls (Schlichung, 1978}, with decreased pressure in the direction of
wall motion {1.e., negative pressure gradient, dp/de < §). From the no-slip
boundary condition. the velocity on the lower wall is identical to that of
the moving glass and becomes zero at the upper fixed wall; a simple Cou-
ette flow with linear distribution will result in the case of zero pressure
gradient. Actually, the velocity distribution should be a superposition of
the simple Couctte flow and the parabolic profile of a steady parallel flow
in a straight channcl with two paralle] fixed walls, The flow should nat be
evenly split hetween the two sides of the chamber due to the motion of the
glass. This wonld result in a lower velocity in the region where the flow s
moving in the dircction opposite to the motion of the glass. Morsover, the
buorancy effect due to the temperature differential between the lowsr and
upper walls should play 2 role in the dyvnamics of the flow here,

At the far ends of the maving glass, both apstream amd downstreans,
the velocity profile would he the wanie as that described ahove. However,
an assnmption of simuple Courette fow i» used in the computer model due
te the aeghgible effi ot of thece prefiles on the somputation. A repeated
bonndary condition, which is presently not an available feature in FIRE,
wotld have beerr more appropriate.  The outflow conditions at Jhe exit
plane of both exhaust manifolds are assumed to resemble fully-develnped
channel fiow, with a near parabolic velocity distribution.

H s certain that the velocity field within the applieator system de-
scribed above will be influenced by boundary conditions. These include
the velocity profiles at the inlets and outlets, speed of the moving glass,
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pressure considerations at the exhaust ports, as well as the lemperature
distributions within the flow and among the houndaries., The velocity field
does not change significantly as the fluid enters the narrow injector channel,
and retains memory of the holes corresponding the their upstream locations
in the feed manifold. Additionally, it is interesting to note that we observe
hole memnory effects even when the glass is moving slowly or at a standstill.
These streaks are more pronounced in the case of tin oxide rather than the
silica.

Regarding the fluid properties, the gases involved are essentially pres-
surized nitrogen (> 93%) which is passed throngh liquid chemicals to create
the desired gaseous solution. Practically, the flnid flow is considered as that
of an incompressihle air, and the fluid density and viscosity are the same
as that of air at atmospheric pressure.

4. Project goal. OQur goal is the design of an APCVD applicator
that exhibits optimum coating performance. This implies creating u film
thickness across the entire ribbon width that is uniform and devoid of any
deposition hole memory. Additionally. adjacent. applicator systems niust
operate independently. The geometry and dimensicns of the applicator
are of particular interest. These inclnde lengths and widths of the upper
manifold channel and lower injector channel of the feed system, height of
injector channel ahove the glass surface, position of both upstrean and
downstream exhaust manifolds. location of makeup air inlets. as well as
the separating distance between adjacent applicators. Also. the influence
of various hole shapes, sizes. spacing, distribution patterns. and the angle
of the flow through the holes into the feed manifold. While these ure
important paraineters. they will not be the subject of analysis in this paper.

In deference then to the above geometrical parameters, we are con-
cerned with investigating the effect of the following on the gas flow pattern
and mixing efficiency:

o Gaa flow rates and velocities. including the inflow and the outflow
ports {which are affected by the speed of the glass ribbon creating
an unbalanced exhaust low).

n Entrainment air flow above the glass ribbon (which is drafted from
the surroundings at the edge of the applicator).

o Temperature gradients and huoyancy effects.

o] Boundary layer flow separation, and stagnation region formation

in the near vicinity of the exit of the narrow injector channel (as
the flow hits the moving glass); these phenomena may enhance the
formation of undesirable particulates.
Q Manner of gas introduction (e.g.. through holes, slits) and the angle
of the injector channel,
Another motivation for our cffort is the development of a clear under-
standing of the kinetics of the chemical reaction, primarily to identify the
treaction tinie and reaction zone Jength. This is also related to the available
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flow rates and exhaust manifolds design, which must allow the removal of
reaction by-products without inhibiting film deposition. The chemical re-
artions involved in the APCVD process take place on an atomic seale are
by no means trivial to assess. We will not address these issues, however, in
this study.

5. Simulation software. Solutions to extremely large and/or com-
plex flow problems are increasingly more feasible due to continuing ad-
vancements in computing power. The CFD code FIRE, developed by AVL,
Austria. is used to solve this flow problem. FIRFE {Bachler et al.. 1992} is
a general purpose finite volume based computational fluid dynamics anal-
ysis package, used to solve incompressible and compressible, viscous fluid
Hlow problems. It is a menu-driven, fully interactive (with built-in graph-
ics capabilities], multidimensional software that can simulate stesdy and
unsteady Hows that contain fixed or moving boundaries. It can handle
both laruinar or turbulent flows, Newtoninn or non-Newtonian fluids, and
non-isothermal Hows as well.

We performed calculations on both the Apolio DN160OD and IP730
workstations. Hun times varied according to the number of volume grids,
iime step size. and convergence criterion. As one might expert, the choice
of & suitable time step was critical to the convergence characteristics and
and vahdity of the eud resulty,

6. Resnlts and discussion. We caleulated velocity components, pres-
sures. and temprratures amd present plots of these variables along with
contours of 5 quantity called "pussive scalar.” 'The passive scalar represent
a trace of Anid particles as the caleulation advances in time, Think of it as
injecting colored dye into the floww. Expressed #s & number between 0 and
1, #t represents the fraction of new Subd present in a computational cell.
The results ran be divided as two-dimensions! or three-disuensional. The
latter is critical to understanding the hole memory effect while the former
becomes relevant once this effect s minimized

8.1. Two-dimensional low test cases. The starting point for our
analysis is the consideration of the two-dimensional flow prablem. M s
important to thoroughly analyze this case heeanse onee the hole memory
effect is climinated the flow will indeed hecome twocdimensional

We assume the flow to enter the top of the upper manifold channel at
a uniform velocity of 0,431 /s per unit depth. ‘The two gases in the upper
channel start to form a parabolic velacity profile after they pass the splitter
plate. Two small recirculation regions form in the bottom corners prior to
entering the narrow injector channcl ns experted. Two distinct weparated
regions with recirculating flow are precent below the exit of the injector.
The size of these separaced regions depends on the velocity, inclination.
and height above the glass surface of the jut imuing from the exit of the
injector. as well as the speed of the glass surface and any thermal gradients
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present. In general, the separated region upstream is smailer than that aft
of the jet. The different cases used to investigate the influence these factors
on the flow field are presented below.

6.1.1. Injector flow normal to the glass motion. This section
considers the geometry where the injector channel meets the deposition
chamber at a right angle, as shown in Figure 2.1. The velocity profiles,
passive scalar contours, and temperature distribution arc given, respec-
tively, in Figures 6.1, 6.2 and 6.3 at time t = 0.61 sce. There is a large
separated region just downstream of the jet near the upper surface of the
deposition chamber, as well as a smaller. but still significant, recirculation
region just upstream. A large downstream separated region aids in increas-
ing the gas velocity near the glass surface by effectively acting as a harrier
around which the gas jet must go. However, the upstream separation conn-
teracts this effect somewhat since it is located near the glass surface and
causes the fluid 1o Nift up. The passive scalar indicates that, as one inight
expect, the fluid has a strong tendency to move in the direction of glass
motion. Although the glass surface is heated. we initially maintained both
the injected gas and the remaining applicator walls at room temperature.
From the temperature distribution in Figure 6.3. it is evident that the jet,
due to its high velocity, causes a local canling in the deposition zanc, and
that the temperature gradient in the upstream segment of the deposition
chamber is wlmost uniform. The same flow pattern described above is also
- demonstrated at t = 3.0 sec in the plots of the veiocity profiles (Figure
6.4) and passive scalar (Figure 6.3). The latter shows a near total flush of
the old fluid inside the applicator system by this time. ‘The total pressure
distribution, exhibited in Figure 6.6 at ¢t = 2,98 eec, indicates a pressure
loss us the flow moves down Lhe injector channel. as well a8 » relatively high
pressure in the deposition zone located next te the low pressure separated
flow. ' :
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Fig. 6.1. Velanfy prafiee fav the reo-demensionad flou 2esc oith normal mpecfor ¢ =
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Fig. 5.2. Pas<ve scaler ronteurs for the two-dimensionsl fow sese untt normal mjee.
for: t = 061 sec.
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F16. 6.3. Tempe-atiure distrib~tian for the two-dimensiemai flow cust with noraed 1
dectre 1= Q.61 sec.
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FI1G. 6.5. Parsive scaiar contucrs for the fws-dimenzional flow sase woth narmal mjee-
for; t = 3.0 sec.
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FiG. 8.6, Total pressare disiribution for the it Atmenassnel flow case wtth aorrial
injertor; ¢t = 2,98 sec.

To examine the influcnce that the efficiency of the exhaust manifold
of an upstream applicator has on the flow field of the next applicator,
we imposed the outlet velocity on the left as 2 boundary condition on the
upstream (right) end of the deposition chansher. This would model the case
where the previous applicator was allowed 1o flow freely into the next one.
The velocity profiles and passive scalar are presented in Figures 6.7 and 6.8
respectively. at § = 0.37 sec. 1L is clear that the jet flow is dominated by
the high velocity upstreamn incoming flow, producing low velocities and a
fift up of the jel from the glass surface in the deposition zone. This results
in low applicator efliciency. and imples that we have to insulate adjacent
applicators from each other.
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Figure 6.9 depicts the velocity profiles of the flow at t = 0.127 sec
when the glass ribbon is slowly moving at 12 in/min (0.0051m/s)%. It
shows a considerably larger upstream separated region, more flow moving
upstreant, and lower velocity by the glass surface.

B

e Gt A ok e e 44

o

FiG. 6.9, Velecity prafiles for the 2D fow coxe with wormal injerter and glags »ibdnn
moung ¢f JZ anfmiing t= 0127 sec.

6.1.2, Effect of temperature gradient. We next reduced rhe tem-
perature difference across the height of the denosition chamber by increas-
ing the upper surface from room temperature to 350" C. The velacity pro-
files are presented in Figure 6.10 at = 8.5 cec. It shows a rathe; diminished
upstream recirculation as the flow becomes less buoyant. The velocity near
the glass in the deposition zone 18 decreased with decreased temperature
differential; its taximum value is 1.21 m/s compared to 1.47 m/s for the
case of high thermal gradient. This poses a delicate prohlem. On the one
hand, teo much recirculation created by a high therma) gradient conld pro-
hibit the chemical reaction and/cr cause unwanted partienlates to deposit
on the glass surface. On the other, elevating the temperatuie along the
upper walls could promate a premature reaction.

6.1.3. Effect of injection angle: flow at 30, -15° and -45°. To
study the effect of injection angle on the jet impact on the glass and the size
of the separated regions, we modeled the jet with different injection angles.

2 We allowed the glass ribbon to move at this spocd (6 maddd sonmorcia! APCYVD
devices
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Fi6. 6.10. Veiceity profiles for the 2D Moy case wak normad mpectar and upper deps.
artion shamber surface mogivtained ot 35070 £ = K 481 8oz

The injection angle § is measured from the vertical axis perpendicular to
the glass surfuce. and defined to he positive in the clockwise direstion.
Thus positive angles have the injection channel pointing in the direction
of glass motion. while negative angles have the channel pointing counter
to ghass motion. The velocity profile for these flow are displayed in Figure
6.11fr 8= 30" and t ~ 4.0 sec, Figure 6.125or # = 15" and t = 8.47 ser,
and Figure 6.13 for 4 = —45° and { = 0.127 sec. Aleo the total pressure
distribution for the case with ¢ = ~15" isshown m Figure 8.1d at £ = 4.
sec. For all of these cases. the temperature of the upper surface of the
deposition chamber is maintained at 350-C.
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FIG. 6.11. Velocity profies fav the tuo-dimensioral Aow case with injectien crale § =

307; ¢t = 1.0 aee,

FiG. 6.12. Velocity profiles for the 'n.m-:l:'mm:ianc!'ﬂ-m: rase with Jnjiction angle 8 =
=159, t = R.A7 822,




ADA294785

FIG. 6.11 Velarsty prohles for the tws dimeasione! flow tese with infection angle § =
~457: t —~ G127 10,
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Fro. 6.14. Tetal presswre disteibotion fon the tur-divionsisnad loe save with inpection
angle § = ~15%; 1 = 847 n- :
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{ms)

TG, 6.15. Aoz depesition welseity as a funclicn ¢f jet angle,

In the case of @ = 30°, we clearly observe 2 reduced downstream srpa-
rated region and an increased upstream recirenlation. This upstream zone
“lifts” the jet upward and away from the glass surface, causing the velori-
ties by the glass surface to he smaller in magnitude Ford = -15°, with the
jet direction counter to the glass motion, there is a larger downstrean sep-
aration compared to the standard case of injection at a right angle (6 = 0°,
see Figure 6.10). The reduction in flow area due whe presence of the larger
downstream separated region pushes the jet furtler 4 «wwn toward the glass
surface. and also accelerates the flow in the proxinaty of the glass surface.
This cffect is accentuated in the case of # = =45 in that it forcea the jet
even further down. The reciveulation upstreamn alnest disappears and the
incoming flow near the upper surface is slowed down; but there is a bigger
separated region downstream. From the preceding observations. it is evi-
dent that the deposition velocity? decreases as a function of the jet angle
6, as shown in Figure 6.13. The asymptatic value depicts the limiting case
of a jet moving paralle] to the glass (6 -~ 90%).

Tt thus appears that by angling the injection channel in a direction
apposite to the glass imotion we can suppress the upstream separated region
and move it further vpstream. This causes the maximum velecity and
the total pressure near the glass surface in the innediate vicinity of the
depogition rone to increase, which is desirable for higher quality deposition.

2 Defined as the maximum velocity among the row of grid eoll just abeve the slase
surfave
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and keeps the jet on or near the glass surface for a longer distance. This
is an inleresting upshot and rather connterintuitive, since present APCVD
systems have injector devices jetting the fluid either normally or at an angle
in the direction of glass motion. We are currently developing an invention
disclesure on this new approach.

6.2. Three-Dimensional flow test case.

6.2.1. Injection via side holes. We need three-dimmensional mod-
elling 10 both detect and correct for the effect of hole memory on the flow
ficld. This test case corresponds to the original design of the actual experi-
mental model. Since the number of volume grids required is Iarge resulting
in extensive computation, only a section of the applicaror ia seleeted. This
section contains two holes, one on each side, fording the gases at 30° angles
normal Lo the channel sides (spe diagram below). The area of each hole is
0.0025811 in® {dictated by the compntational grid) and the magnitude of the
gas velocity through the holes is 15.95 m/s {resultipg in an x-component
velocity of 13.813 /s and & y-component velocity of 7075 m/s). Althoush
the {wo flows are in vpposite directions, symmetry planes were assumed 1o
exist midway between adjacent holes. In the ahsence of a repeated bound-
ary condition feature in FIRE. this choice saves ~onsiderable computation
time since the nexi option is to consider a model with few rows of holes
{possible three), which can make the number of volume grids prohibitive
for practical computation on a workstation.

Plts of the passive scalar are shown in Figures 6 1 and 6,17 3t 4if-
ferent erise sections are in the fow. for 1=0.11 sec and 1=0.162 sce. te-
spectively. The veloeity field retains memory of the holes coreesponding to
their locations upstrearn in the fewd namfuld, which persists as the flow
propagates downstream. This is evident by the elustering at the center to
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form an elliptical pattern. Now that we have verified the hole memory of.
fect computationally, let’s examine design alternatives aimed at alleviating
it.

F15. 6.15. Vertical end borizeuta! paseive scalur contaurs for the D flowr cas with pas
indet threugh side hnles- t = (.11 sce.
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Fi6. 6.17. Horonte! pramve seale= rortours for the 3D flsw 2ase with pas inlet through
side holes: £ 0162 220 .

6.2.2, Injection via the top: holes & slits. Qur first approach
was to modify the channe! by replacing the hole gas inlets with wlits. This
eonfiguration rescinbles the laboratory model without the splitter plate and
the side holes replaced by slits on top of the feed manifold {goc diagram on
next page). As before, we simnplified this model to that of three-dimensional
chanpef flow with 0.5 in. x 0.3 in. square seross section and symmetry
planes. Tirst, the How from two slits with no overlap is simulated. The olit
dimensions are D.03125<0.5 in with a flow valocity of 5.904 m/s.
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In Figure 6.18 the passive scalar at various cross sections fur the flow at
t = 0.25 sec shows that the flow from the two slits, ecpavated at a distance
of 0.0625 in., interacts and twists with a high concentration region at the
center, and lower concentration an the sides of the channel. As the sepa-
rating distance between the slits 15 increased to 0.137H in., a more uniform
distribution of the flow across the cross-sectional area of the channel is ob-
served. as demonstrated in Figure 6.18 for the passive scalar at f = 0.244
sec.
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Additional calculations are planned using different arrangements of
slits and holes to obtain 2 more homogeneous distribution of gases.

7. Concluding remarks. We have observed a number of problems
in applying APCV) technology successfully to produce high quality coated
glass. Some of the these relate to the memory of the gas freds, the shape
of the deposition jet, separation and recirculation zones, stagnation region
where particulates can form, and exhaust. efficiency. To predict the flow and
design improved APCVD applicators to help alleviate the aforementioned
problems, the gas feed system and injection angle must be modified based
on the observation of their effeer on the flow in the deposition zonre near the
glass surface. Parameters affecting the deposition process include: injection
velocity and angle, height of injection jet exit above the glass surface. and
speed of the moving glass. The preceding variables, except for the glass
speed, can be individually altered for each applicator in order to achieve
the desired performance.

The results of this study show that the velocity field does not change
significantly as the laminar flow moves into the narrow injector channel,
and retains memory of the hole locations upstream in the feed manifold.
‘I'he memory problem is 2 result of the manner of injection and is created
due to insuficicnt mixing in the upper manifold channel. Therelore, a
mechanism is necessary to force the gases to turn and mix after flowing
through the holes inte the feed manifold, and before entering the iniector.
Turbulence can serve as a vehicle for that purpose. However, perturbations
created to trigger turhulence will be dampened due to the low Reynolds
number of the flow. ,

Fram experimental observations high velocity in the vicinity of the
deposition zone is required for better coating. This translates into a higher
total pressure on the surface of the glass. In the case of low velocities,
the deposition filni is vulierable 1o outside disturbances. Tle effect of the
injector channel angle is to accelerate the gas in the direction of the drawn
glass. This results in a stronger impact for the gases with the glass in the
proxirnity of the deposition zone. It is interesting to observe that due to
the temperature diffcrentia) between the lower and upper surfaces of the
deposition chamber. the buoyancy efect is responsible for reducing the size
of the upstream separated region  The role of temperature in enhancing
any buoyancy cffcet will become insignificant if the upstream flow rate is
increased. as it would then be dominated by the inertia of the flow.
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SHAPE OPTIMIZATION AND CONTROL OF SEPARATING
FLOW IN HYDRODYNAMICS

THOMAS SVOBODNY*

Abstract. A model for computing flows with apecified separation characteristics
is presented. This is based on a shape optimization method for constructing a surface
with a given tangential vorticity ficld.

1. Introduction. The Dirichlet problem for the Stokes opcrator is
well-posed. That is, if we specify precisely the velocity on the boundary,
then there exists a unique solution to the boundary value prohlem. Since
the Stokes operator is the principal operator for the equations of viscous
flow, the same considerations apply vis-a-vis the boundary ¢onditions. The
specification of velocity on the boundary js the relation that expresses the
phenomenon of the fluid’s adherence to a solid surface due to intermolecular
forces. In some situations, cne would perhaps want to model a botindary
interaction by giving some other quantity on the surface, such as surface
stress, or pressure, or vorticity ({1).[6]). In the present article we present
a situation where one wou'd like to specify both a surface vorticity while
adhering to the requircment that the velocity be zero on the houndary.
Clearly, something must give; what gives is the boundary: we specify vor-
ticity and then the houndary velocity is a cost that we wish to drive to zero
by finding the right surface. Even in the case where zero s unattainable,
we can interpret the solution to this minimization problem in a physical
way. The method deseribed in this article can be used not only to construct
surfaces with prescribed flow properties but also to vompute flows with free
surfaces. .

In the next section the model of flow separation that motivates the use
of the vorticity boundary condition is explained. In §3 we put evervthing in
the context of shape optimization and compute the gradient of the relevant
functional. In §4 we show that the optimization problem has a solution
and how to define the gradient in a variational manner. In the concluding
section, we discuss briefly the numerical computation.

2. Flow separation. The stall of an airplane wing is a familiar phe-
nomenon: as the angle cf attack is slowly increased. the form of the wing
relative Lo the mean stream is no longer such that a streamwise pressure
gradient on the lee-side of the wing invokes a favorable circulation over the
wing 1o ensure the required lift. Al a sufficiently high angle of attack this
pressure is so reduced that there is a region on the lee-side where the flow is
reversed near the surface; the streamwise velocity turns away from the sur-
face and circumnavigates a “bubble” of the reversed flow or joins in a wake

® Supported in part by the Office of Naval Research Grant N00014-91-1 94,
Deparrment of Mathemarice and Statistics, Wright State University, Dayten, OH 15425,
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behind the wing. In either case we say that the flow has separated from the
surface. Thus, separation is typically defined {[3].'2}) as the departure of
a streamline from the surface or as the occurence of & singularity so as to
render invalid the boundary layer approximation. We make no direct use of
this definition in the present work. nor do we consider the boundary layer
approximation except to make some intuitive temarks to motivate interest
in the role of the surface vorticity field in the separation phenomenon,

The separation at the surface plays a major part in the development
of the global flow picture. Particularly, when separation occurs. there is
usually formed a vortex-like structure or structures. In typical examples,
we have the large vortical rolls that develop at the ends of wings of large
transport planes: herc there is no separation until close 1o the trailing edpe
of the wing: on the other hand, in swepl-wing fighters separation oceurs
on the forchody and vortices form which can effect the flow over the aft
portion of the wing as well as serve as dynamical drivers for structures such
as vertical stabilizers. Worthy of mention in this context is the concept
of vortex-lifi, whereby the vortical structure over a delln wing induces
favoralile-to-lift pressure field. Actually. the story of lift for separated flow
is not in good theoretical voice and i presently being told mainly through
experimental and observational studics.

We should also muake reference 1o the significance nf ceparation to other
engincering problemns such as drag, pressure recovery, and nolse generation.
When one considers the wide range of flows that can oceur in nature and
indeed of which man could make use, one soes that artached Hows with
stable boundary layers form a very restricted elase { rhis is analogous to
the situation in systems theory vis a vis linear systems): yet, these flows
are the enly ones understood.

To observe separated flows and the attendant surface action, expuri-
mentalisls can coat the surface of & wing or hydrodynamic surfacs with a
viscous material such as paint, dye, or oil 123, In the observed flow. the
coating forms strenks along the surface; these follow the field line of the
tangential surface shear. This vector field is known as the skin-friction, and
it is observed that separation is characterized by the appearance of critieal
conditions in this vector field. {Hirsute individuals can do this very cheaply
in the bath tub.} Mathemartically. i1 is more convenient to work with the
tangential vorticity, to which the skin-friction 15 closely related. Let us con-
sider coordinates {§;.8». 7} in 2 region of the fiow domain near a portion
of the {smooth) boundary. The coordinates (£, £2) refer to the bounding
surface and 1 to the normal {into the flow domain}, which latter we take
to he euclidean distance from the boundary. so that every point near the
houndary has the representation B = r{#,. &) = . whete £ is the surface
parametrization and n ix the unit pormal. We use an orthonormal frame in
a neighborhondd of the boundary: ¢; = %ﬁ.tg = %—E.n = £y x t5, where 8,
is arclength in the direction of increasing &2 def = hidf*. Assuning te
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linear constitutive law of Lthe Navier-Stokes equations, the surface stress is
T = py%0¢y + p+3t; + (1738 = p)n, where p1 is viscosity and 47/ are shear
strain rate components. ‘The skin-friction is the tangential component, 7,,

_ fw Ou . O
To= Mgt G gt
. _ bu il
(2.1) = dgetitagsts

Here, the flow velacity is u =2 ut +yto +un and we have used the condition
u = 0 for adherenes 1o the boundary. The expression for the vorticity,
@ = curlu. is, it these coordinates,

6u 1 B(kyv) 1 0(hu) Ouw 1 Blhat) 1 Bthyu)
W= (e (- P g (e

o an T TR e R o

and so

Ja.

Guw I 8har fuw 1 (’)h;u
—— o c————— e - m—— o)t
Jsa  hy On )t2+(3s1 hy én t

which on the surface reduces to

nxw-=:(

Hu ov
2.2 (Ripmp = 7— it
(2.2) WX Ng=p 3nh+0nt"

which is just =17, {2.1). (Notice that this is stil} the correct. expression
even if ulr # 0. The tangential vorticity field, w x n, (acrually this is
vorticity rotated a right-angle about n), will be the surface vector field of
interest to us throughtout the work. From 2.2, we see that u = (Wxnjn ¢
o(n). and =0, for small 5, the velocity field is tangent to the sutface, except
al critical points of w » n. To see what the normal component is we can
integrale the incompressibility condition, divu = : again. assuming that
1 is small. we have

Jw

n

= diveca{Wean)

= "'divfm.(u x n)”‘

or. upon integranon,

2 2
. * N’
w = =divignfw x n)-2— = —(enrlw . u}-"z—.

The tangential divergence, divy,,. can be defined without reference to co-
ordinates in the follov.ing way. Let A denote a smallsurface pateh centered
at 5; with area iA4]. then

dive.nise) = Igl‘mc Al f(’n »u)-dl.




328 " THOMAS SVOBODNY
Thus.
divien(w x n) = .}‘iim& |A~! $w-dl = (curlw - m).
, Al

The vector field, curlw = curlcurlu, which can be seen to be of major
importance near critical points of w ¥ n, and which appears as a termu
in the Navier-Stokes equations and is seen to measure the rotation and
stretching of vortex lines, is known as the flexion-field [22].

In summary. then, streamlines wil] he expected to be parallel to the
surface for su, g aslong asw » n # 0. When w x n = § which generally
happens at isolated points {one needs special symmetry forw xnz= 0 to

hold on a curve). we have [11] (i) a point of separation if curlw - n < 0, or
{it) 2 point of artachment if curlw - n > 6. I separation happens then the
strearnlines will tend away from the surface; following Lighthill [12]. we can
see that this is chararterized by the convergence of near-surface streamlines
toward a separating surface determined by 2 w - 1 field hine. Lovk ar the
solume fow through a strecamtube I, whose base s on the surface between
two skin friction lincs and the height of the tube s 5

L ]
volume flow = fj v-dS= f f lw x njzdzde = ii@ x nin’h
> v Jo 2

If h — 0, then #° gets hig, i.c., streamlines diverge from the surface. Thus,
a necessary condition for sepuration is that skin-friction lines converge ou
a himiting line. What role, then, do the surace vorticity and flexion fields
fulfill in forming the character of the mean onter flow? In particular. how
are “ vortices” genecrated at the surface. and how are their characteris-
ties determined by what happens at the surface? Enginecrs are particu-
Inrly interested in how to conteol forehudy vortices on swept-wing planes
{{18]).These questicns will be dealt with in a future work; what is clear,
from the above analysis is that the surface vorticity ficld plays an important
part in any flow field amd partieniarly in those fows which are said to be
separating. ‘Thue an important first step in the control theory of vortical
and/or separnti=g flows is to be able to have some control over this surface
vorticity. In this work we are interested in the problem of how to achieve
a prescribed tangential vorticity fieid by use of either & geometric eontrol
{shape of bounding surface) or houndary control {tangential blowing). In
the next section. we discuss this in the context of shape oplimization.

3. Shape optimization with a preseribed surface vorticity. We
consider a body B in a viscous incompressible fluid moving with respect to
the far-fluid at a uniform velocity h. The flow is ~onsidered in a bounded
region A containing B, The boundary of the region A will be dencted as
#A. The boundary of the bady 8B includes a connected component T, that
we will consider to be varrable or subject to design. Since the body can Le
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parametrized by the variable part of the boundary T, we shall write also
B = By, and we denote by £ the actual flow region

(3.1) 0% A\ Br,
en» that we suppress the use of the parameter I' for Q.

The Aow velocity u and the pressure field p, are assumed to satisfy the
Navier-Stokes equation in the flow domain:

I (3.2} p(u; +u-Tu) = —grad (p + v} — curl (peuri u}.
where the mass density, p, and the viscosity, s, are both constant param-
l eters. The mathematica) problem that we wish to consider is : Given a

smooth vector field f (given parametrically on the unknown surface), find
the surface T’ that minimizes

. 1
(3.3) guy=3 [ jxnfde,
AR
! wheze w satisfies the Navier-Stokes equations 3.2, with the boundary con-

ditions

(34) ll!(,n\r = h.

(35) w-nlp = 0,

(3.6) (Vxu)xnlp = fxn

The first condition gives the motion with respect to the far-fluid; the second
condition implies that the surface is not to be penetrated by the fluid: the
third condition fixes the tangential verticity. In this work, we will only
consider the case that none of the boundary surfaces are deformed in time
and that the vector ficlds h and f are not time varying. The outer flow of
a separated flow is typically non-starionary and we will eventually consider
this possibility: moreover, we will have to allow for this possibility that
n x 1 may not be constant on the boundary, For the time being however,
our main goal is to study the shape derivative of this optimization problem
and it will be convenient to first couch this study in the context of a steady
flow. Notice that the condition (3.5) implics that the functional

Jy = -l-/ ' x nl?do
2Jr
could be used. 'The optimality systems for these two functionals are the

same. An equivalent weak formulation of the governineg equations can he
found by partial integration. Defining

X={ueH"(9): T u=0, ulgar=0 u nj=0}
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the equivalent problem is to find 1 50 that u ~ h € X and satisfies

(3.7} /s{?xu}stvxﬂ + {(Cxulxu -rdr
]

=/;f{fxn}~reﬁ‘. Vre X
r

Here, ¥ = pp~*, is the kinematic viscosity or mumentum diffusion coeffi-
cient. Now we have a framework for our problem. We want to minimize the
functional 7 where the u in the integrand is constrained by (3.7). These
state equations are well-posed: we will delineate suitable hypotheses under
which there exists a minimum to the functional. For mininimization in
this context one naturally considers an invesigation of the gradient. We
will show that suchi an objoct exists. Moreuvver, it is straightforward to
see that the solution to the aptimization problem gives us some kind of a
solution to our original problemn: we are given a surface T* upon which the
adherence condition doss not necessarily hold; thus u® x njr = g x n where
one now considers g to be the {Dirichlet) coniral {tangential b?rmmi or
snction) [7]. This is one method of hybrid-control.

We want to compute an expression for the shape derivative of the
functional J with respect to variations of the surface I'. For this purpose
Iet us gather togerher a few facts from the theory of shape optimization
{{17].[19].18].115]). Let V denote a vector field {in %) defined in a normal-
neighborhood of T, and vanishing ou 882\ [. Tor example. V can be given
onTasV = Vit; + V44 V" n and then extended into Q in some way: fe.,
Hx = r+9n, then V can be extended in a constant way, ¥ix) = V{r),
or perhaps as Vix) = V{rih(y), where 4 is a cutoff function, ete,, . A
deformation of the boundary and thus the dormain will be given by

F(x) = x + AV(x)

The deformed control surface is T* = FX(I). We will now define the
material derivative of a functional defined on the demain or boundary. Let
@x{or (3} be afunction defined on FX0){or on F2(1 ). Standard notation
in shape optimization ([R]{19)) for the pullback to a function defined on
or Tiis ‘

& =(F' oy =gro bt

(and. of course. {* = (F*)°{y = a0 FA).
The materal derivative is

: d . : -1 3
a= ﬁakf.\zs = }kféi HFMY 6n = o)
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we pull back to form the difference quotient in the fixed domain. The
material derivative of a function on I' is defined in an analogous way. Now
suppose that x € 2N O, for some A, then

O ()
Bim A"(82)(x) - 8(3) + V(x) - 4.

. d
o(x) = EX'?A(X)IA:n
(3.8)

The first term on the right side of the last equation is known as the shape
derivative; it is denoted by ¢ and can be shown to depend only on Vi,=o.

and thus we can nnalogously define the shape derivative of a funztion de-
fined on T:

'(r) = {(r) = Vianl(r) V.

where Vgqp = V =T, = ¥V - n%. The shape derivative measures the
change in a function on a domain due to changes in the domain. For
example, the function could be the solution to a differential equation to be
solved on a domain whose shape may be suhject to change. It is clear that
the shape derivative is the ohjecl that appears to first order in an expansion
of the solution in powers of A. Notice that if f is defined everywhere on
R3, independently of T or , then its shape derivative, f' = 0, since. in
that case, for A small encugh, fiiz) = f(z). The shape derivative can he
shown to depend only on the component of V normal to the boundary.

To caleulate the derivative of J, we will change variables to write J(I'*)
as an integral over the fixed T, for this we will need to calculate the Jaco-
bian of the resulting change of variables. at least to first order in A. This
Jacobian is defined as

(3.9) Jac(N)dT = (FA) dr*,

tising the notation of the previous sectinn, we let suhseripts denots deoriva-
tives of the vectors v and v, e,

Br
= .0—6: = ety
Then
(F)di (e, e} = dTNFry. Flr)

fhi
!

fann +AVy.r 4+ :\Vp)
[(rr 4+ AV1) > (ry 4+ AV 2))dE S,
{1 (B E) (Vi X e dry x Vy)

It

i

)+ o(k)}

If‘) x 1‘2'2

vy % x| d€y dE,
= Jac(A)ir;, x ra|2dé déy:
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and we have the change of variables formula:
j far? = / (F)(fdr*) = / (f o F*)Jac{A)dT.
| 3 e

An expression for the derivative of the Jaccbian can be found as follows: !

{ryxr} (Vi xra+1 x V)
f!‘; x ngg

(lyha) ™ [Vy - (r2 xm) + (V2 - (0 x 1y)]
hTH (V) -ta) + A7 (V2 tg)
. . 3& éfbt
- :-i 1 -~y A -1 2__1_ 3 Beddi’ )
AT +ATVE H (Ah) Y % +V 8&}
=V {n-(ri; +r22))

- -1 B 1 —i__{?__ 2 -
= bt bV + T gL (V) 2

il

d
5!&:{3}&:3

- div“ﬁvisn*ggim
= éivfﬁ,,\’.

in this expression. H denotes the mean curvature of the surface. Notice
that we can then use Siokes thoerem and the conditions on 'V to write

@10 f divisFdl = / 9H(F -n)dT.
T iy

We can now proceed io calculate the derivative of the functional. Before
we consider the form of our specific functional 2.3, let us compute J* for

J(rt) = fi J(u)dr?,
where J is defined on T'* and u = u, = ufp>. Pulling back to I,
Ty = fr , J(u)dl? = ] J{wy o F*}Jac(Aydl,
then ) s
Do = lmATHI@?) - J)
= i jf {7(u*) - J(u)} + HuP)Jacld) - 14T

I Of course, it is sy to see what it js we are calenlating here from the following
simple consideration. As indicated Ly 3.9,
Jusfdy = des(Ff‘} = det{f + AV an V).
and thus,
d
EJ{:s{i}f;;—g = tr{¥un V)= diviaaV,

and the calculation in the text gives this function in terms of the componentsof ¥,
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/ J()V + J(u)divignV dT
iy

/ J )V 4 ¥ b—a;l(u) +V . VinJ (1) = J(u)div,Vdl'
-

(3.11)

{ a e
/r J(@)Vdr + /r (2117 () + =T W)V dT.

having used (3.10). By use of the chain rule, the first integral can be seen
to measure the way that the solution to (3.2,3.4-3.6 ) changes with respect
to the boundary: we will deal with that term later. Qur interest for the
moment is on the second integral (we'll refer to the term in the integrand
multiplying V'? as boundary flur). which for the functional (3.3 ) takes the
form:
) 1 2. d Jux nl? n

(3.12) /rth']uxm (i ar
Becnuse of the non-penetrability condition, the first term is mean curvature
times the square speed on the boundary which of course is zero if the fluid
adheres to the boundary and there is no forcing. Both terms can be linked
with the rate of vorticity gereration at the bounding surface ({12]), but this
doesn’t scem to very useful in terms of a design sensitivity analysis, which
is our concern here. Instead we will re-write the second term in terms of
the square apeed and the flux of the square speed and a third term which
can be related 1o “effective” curvature.

If we compnte the normal derivative in the expression (3,12},

& mxnf® fu x nf?
LA LR MR 2 okl
Son 2 1

n-{(nxu). Vmxu))+n mxu)x{¥Vxnxu))

we see that the first term on the right hand side simplifics berause of the
boundary condition of no-penetration:

n-((nxu) -¥{nxu))
= ~(n>xu) - ((n xnuj) ¥n)
(3.13) ' = ~(S{u x n),n x u).

This condition also simplifies the the second term :

n-(nxu) x(¥ x¥(nxwu))
= nx(nxu) (Vx(nxu))

fn-u)n - (n-nju}. [V x (n xu)

-u-(u-VYn-n-Vn-2fHu)

2H ul® + Va(iul?) - (Su.u);

i na

(3.14)

here S is the shape operator from surface theory [14). 1§ 1 were a unit vector
on the surface then {(Su, u) would be normal curvature of the surface in the
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direction of u. Thus in the case that u does not vanish on the surface, we
can consider this tangential blowing as an enhancement to the curvature
of the surface; the complete flux term for the boundary variation is then

. .
Hu+ %{%}-} ((HI- S)u,u)+ ((HI~S){u x n),{u x nj}

I the surface streamlines are regular. il is seen that the last two terms
cancel; however, we will keep them because they may bhe of some use in
certain numerical maneovres.

The first integral in describes the variation of the integral due to the
change of the solution on the changing domain. By the chaix rule [21] we
get {auain we use o simplify)

/ Fauyvdl = /{u <nwxnl+{uxnux an
r N : dA

{3.15) = u-w.
r

‘The variable w = ' is the shape derivative of u at A = 0; it satisfies the
system of differential equations and boundary conditions

L}

{(316) w+u-Twi+w Tu —grad {p} — curl {zurf w},

divw = 0,
wlhaenr = 6,
{3.17) w-njr = —dive.{u}{V . .n},
{318 Vxwxnlp = ).
where £(2) = &w > nly-o = £ (52 t, + £2t5), (cf. 2.2). This then is the

deseription of the dircctional gradient of our functional. For computational
purposes it is desirable to put this derivative in # variational framework.
We will infroduce this weak derivarive Inter in the artizle. For the moment,
we will discuss some technical matters.

4. Existence, uniqueness, and differentiahility. We will gather
here just a few facts regarding the well-posedness of our state eguations.
As our intent is to present a method by which we can construct a surface,
we are interested in the conditions under which a minimum exists to our
optimization and when we can define a gradient. The variational system
of equations (3.7) has a solution if the surface ficld £ is in HY#*(I'). This
can be shown as in {1}, as our system of equations falls into the clase of
equations studied there. Furthermote, one can show regularity results of
the following form [26]: the solution map

{If.f}—u
is continuous on
Lip x HY/Y(I') = H{M N “(Q)
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We will always assume at least this much regularity with regard to the data
(that is, the boundary and objects defined on the boundary).

It turns out that uniqueness of the state equation is necessary for the
existence of a minimum; for this purpose, one can define a generalized
Reynold’s number R, so that if R < co then the solution to (3.7) is unique.
This number depends oun the geometry, boundary data, and viscosity, being
large for a large domain. large data, and small viscosity. For details on this
construction. consult ([10].11}.[20]). Furthermore, we need a compactness
condition in order to establish existence of a minimum; essentially what is
need is some uniforin control over the Lipshitzness of the boundary. The
easiest way to see how to do this is to assume that I' is given by a Monge
patch [20):

r.:' = {(Elvf?v() :c = ¢(£11£2)7 (5\162) € D}

Of course, we generalize to the case where I is given by a finite number of
Monge patches. Now define '

Ua = {0 : |¢] wypr < 3}

ProposITION 4.1, Assume that h and £ are in H®; suppose that
R < ). There exists a ¢° such that

7(r*') = mi ¢
J(*) = mip J(¥)

Proof: Le¢t {¢,} C U5 be aminimizing seqquence, and let {u,} be the
corresponding solutions to the state equation. The assumptions are more
than enough to guarantee that

Fnll + Juallcee £C
And so (passing to subseguences):

on — 8" in H3(D).
u, —u’in H'(Q).

u, — u’ in C()

The equation for u,, is ¢

/ r(Vxu,}-(Vxr) 4+ (Txu,)xu, rdx
., :

=/ vifxn) rdl, Yre X,
Ca
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f £ € CHQ) then clearly

{fxn}-fdi‘-—cj {fxn) rdl;
T+

s

and so,
/:f{?xu.}-{\?x?} 4+ {(Vxu)xu, - vdx
1. :
=/§{fxn}-féi‘, Yre XnNCY
r .

but €1 is dense. Since, R < 1, the solutions to this system are unique and
we conclude that u, = u(4*). Finally, we can pass to the limit

Jim F(r**) = 7(I°).

We proceed to estaklish a variational form for the directional derivative
of the functicnal. The gradient in this weak form will be of interest in
devisitg a computational method for computing T'. The gradient of J at
'

P

and the equation for w is (3.16), which was derived by applying the chain
rule whereby u = o’ is the shape derivative of u with respect to bound-
ary variations. ‘To iake this expression for the gradient well-defined, one
must show that this shape derivative oxists. One would like 1o do this by
computing the material derivative of the solution and applying (3.8}, for
example, as explained in 117} for the case of a linear equation: one pulls
back to the A = U domain and constructs the equation that the pull-back
u* satisfies on (3. ‘This will be an equation

GAV.n)=0

of the form of the Navier Stokes equations hut with continously varving
coefficients {assuming V € {2} One can get that &t exists by applying the
implicit function theorem at the point {§.u). e, G{0. u) arc the equations
{3.2). In our case, however. we cannol express directly u® in powers of
X because the map Dof5(0, 1) is not bijective. ‘This operstor is similar to
that given by the left-hand side of {3.16). As pointed out in {(5].§3) this
operator is semi-Fredholm and onto and thus one can apply the surjective
versica of the implicit function theorem [24] to conclude that the material
erivative and thus the shape derivative is well-defined.” Thus the gradient
{4.1) is wrll-defined.

In formulating the weak version of this gradient by intreducing an
adjoint variable, the essential non-homogeneous boundary condition {3.17)
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presents us with a difficulty. One possibility for dealing with this is to
first enforce this condition by introducing a multiplier as in [5] and then
dualizing. However. since here it is only the normal component that is
involved, it seems easiest to introduce into the derivative J' a potential
term u - V¢ that will take care of the condition. More precisely, let w =
w + Vo . where

, Ao = 0, in
4.2 -C:ig = —div V*. onl
( . ) on - - ton . on

That this Neuman problem is sclvable follows from the fact that w is
solenoidal. It is clear that w solves the same system as w, but now with
homogeneous boundary condition (3.17). At this point we introduce the
adjoint variable £ € X that satisfies

(4.3) L(VX{)-(V’XT) ~(Vxu)x§ rdr

Tx(uxg)r = /u.rdr, VreX.
T

This is in fact dual to (3.16) as can be verified by an integration by parts,
noting that

/(fo)-(wa)dz:/Vx(uxf)vwdz,
n [}

since 1 x § is a vector normal to T'. Now choose. in the equation (4.3).
7 = w. Then, by an integration by parts,

/u-v‘vdl"f(\"xf)-(‘\"xW) ~(Vxu)xw-&dr
r 1}

UxWxué = /}:(u)-edr.
A

where we have used the weak formulation of (3.18). Then we have the
following

PuorosiTioN 4.2, The boundary funciional 7 has a derivative at any
T € H* in any direcion V < C? and

JyYV =

teu. O LI
(4.4) /rsm g+u Vo (M + By ar

where § and ¢ are defined es above.
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5. Conclusion. Once one has an expression such as (4.4), the real
work can begin. One would like a discrete version of the gradient to be
able to use a gradient-like algorithm for minimizing the functional. We have
in mind here what is apparently known in the trade as a design sensitivity
analysis ([8].[13},[16].[19]). Simply, this name is descriptive of its origina
in design. Subsequent to discretization, a dircciion in the approximation
space is typically associated with the node of a triangulation of the design
surface and a variation in that direction {in approximation space) is associ-
ated with the movement of that node in a particular direction {in physical
space). Thus. with the idea that we associate minima with stationarity of
the functional {local exteema are always a problem), we can push the phys-
ical nodes in different directions to see how “sensitive” the functional is to
such movement. Of course, by the time one gets around to constructing an
algorithm for this it resembles a gradient-type programming algorithm.

From the expression for the gradient of 7 it is seen that the it needs
o have al each step current values for the state variable u as well as the
auxiliary variables £ and ¢. A steady flow is found by computing the state
equation in time until 3 suitable mean flow is achieved which is then fed
to the adjoint eqn which is integrated backward in time until steady. The
initial condition is always the steady condition from the previous optimiza-
tion step. Thus the flow takes some time to settle down adjusting to the
new boundary at each step in the optimization. The spatial discretization
is donw through a finite element approximation. The finite-element grid
is dictated by the discretization of the surface. For example. if T is given
by a superposition of height functions, then it is easy enough to align the
grid with the outer glow; however if the surface is given by an orthogonal
mesh of curvature lines, then clearly one wants to move out normally in
the mesh. Although the computational requirements of this problem seem
enormous, it does provide a one shot method for construeting surfaces that
do not allow separation.
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RUNLITIVY

RECENT ADVANCES IN STEADY COMPRESSIBLE
AERODYNAMIC SENSITIVITY ANALYSIS

ARTHUR C. TAYLOR 1iI*, PERRY A. NEWMAN!, GEKE 1.W, HOW, AND
HENRY E. JONES!

1. Introduction. An overview is given of some recent accomplish-
ments by different researchers in caleulating gradient information of inter-
est from modern flow-analysis cades. Of particular interest here is advanced
computational Auid dynamics {CFD) software, which solves the nonlinear
multidimensional Euler and/or Navirr-Stokes equations. The accurate, of-
ficient calculation of aerodynamic sersitivity derivatives is very imiportant
in design-uriented applications of these CFD codes to single discipline and
multidisciplinary problems {1,2].

Sensitivity analysis methods are classificd in this study as belonging to
either of two categories: the diserete {quasianalytieal} approach ot the con-
tinuous approach. This roughly follows the classification presented in Ref,
{3, where the two methods are referred to as the implicit gradient approach
and the variational approach, respectively. These two broad caregories in
exzence differ by the order in which discretization and differentiation of the
governing cquations and boundary conditions is undertaken; for the forraer
approach, the discretization precedes differentiation. In the final analysis
of vither casc, a large discrete system of linear eguations must he solved
when calenlating the sensitivity derivatives.

The principal focus of the present discussion is the discrete approach,
for which the basic equations are presented; the major difficultics. together
with proposed solutions. are reviewed in some detail. However, ndvantages
and disadvantages are associated with each of the wo categories of meth-
ods. Thus. a brief discussion of some recent research activity that involves
the contimuous approach is also included.

2. The discrote approach.

2.1. Summary of basic equations, After discretization, the non-
finear, multidimentional steady-state governing cquations of fluid How and
the boundary conditions are approximated as a large system of coupled
nonlinear algebraic equations as

@n RQ(D),X(D),D) =1
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where Q ia the vector of field variables, X is the computational grid, and
D is a vector of independent input (design) variables. Differentiation of
Eq. (2.1) yields the matrix equation

N 1_8__@ ’ ﬁ,, QR__
{(2.2) R = (')QQ +0X.\ + 3D =0

where R = ﬁ}: ! = 5% (the sensitivity of the field variables); and
A= 5—’,‘) {the ~grid sensitivity™). This latter sensitivity will be discussed
subsequently in greater detail. The linear Eq. (2.2) i first solved for @', in
order that the sensitivity derivatives of acrodynamic output functions, F,
can be caleulated subsequently. That is,

(2.3) F=F(Q(D).X{D), D)
and differentiation of Eq. (2.3) yiclds

oF 23 JF
D f= — ,I — - -
(2.4) F aQQ + a.\.)\ + ET)

where F/' = fj‘,’;, which are sensitivity derivatives of interest. Alternatively,
the necessity of solving Eq. (2.2) for @’ is eliminated by firet solving the
linear equation

(2.3) : (-Z—g-)TA + (%)r = 0

where A is a discrete adjoint variable matrix associated with the funcrions
F. Then F' is computed as

. , _OF ., OF 28R, ;iR
(2.6) F = 3% +aD+A a_\,.\ + 4 5D

For maximum computational efficiency, Eq. (2.2) is solved for Q' if the
dimension of F is greater than that of D; otherwise. Eq. (2.5) is svlved for
A il the dimension of I is greater than that of }.

A number of researchers have successfully pursued the preceding quasi-
analytical approach to ealeulate sencitivity derivatives from ponlinear flow-
analysis codes of varying degrees of complexity. For example. Elbanna and
Carlson (Ref. [4]) have computed sensitivity derivatives for varions airfoil
flows from the transonie small-disturbanee equation. and, more recently, for
three-dimensional {3D) flow over a wing from the full potential flow equa-
tion (Ref [5]). Drela (Ref. {6}) has computed derivatives for airfoil flows
from a streamnline coordinate formulation of the two-dimnensional (2D) Eu-
ler equations, coupled with the boundary layer equations, to account for
viscous effects.

The calculation of quasianalytical sensitivity derivatives is reported by
Taylor et al. (Ref. [7.8]), Hou et al. (Ref. [9]), and Baysal et al. (Ref.
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[16,11]) for interior channel flows from a conventional upwind finite-volume
solutian strategy applied to the 2D Euler equations in hody oriented co
ordinates. These researchers have subsequently extended this work to
calculate sensitivity derivatives for 2D laminar flows from the thin-layer
Navicr-Stokes {TLKS) equations, including external flows over isclated air-
{oils {Refs. [12.13]). Calculation of quasianalytical aerodynamic sensitivity
derivatives with an upwind finite-volume solution of the Euler equations
has also been reported by Beux and Dervieux (Ref. [14)) for a 2D channel
flow. In many of the roferences cited thus far, the quasianalytical sensitiv-
ity derivatives were not only shown to agree very well (as expected) with
derivatives comiputed by the method of finite dif-rences, but were oblained
with significartly lees computational effort.

Deespite the success reported in these works, however. severe difficuities
remain. and these must be overcome. so that efficient, accurate czleulation
of gradient information from large-scale modern CFD software can become
routine. particularly for turkalent 8D flows ~ver complex geometries. Lhres
such majer dificalties identified here are

1. Solution of the exiremely large system of linear equations {either
Fq. {2.2) for @ or Eq. {2.5) for A)

2. Accurate differentiation of all terms in the flow-analysis code (which
ean breome an extremely complex task) to be used in computling
the senasitivity derivatives

3. Evaluation of the “grid sensitivity™ term X', in Eqs. (2.2) and
{2.4), orin Eq. {2.6}. : :

These three problerus will be discussed subsequently in greater detail;
included in this discussion will be some recont rescarch sfforts that have
bheen undertaken to overcome theer obstacles Further discussion of these
and other difficulties is also found in Ref. [15].

2.2. Methods for equation solution. If a strict application of New-
ton iteration is possible and applied in solving the nonlinear flow Eqg. (2.1)
for 7, then clearly the solution of the linear Eq. {2.2) for Q' {or Eq. {2.5)
for A} bacomes simply an efficient back-substitution procedure. This pro-
cedure has been demonstrated in the references cited thus far. However,
the formal implementation of Newton iteration is not feasible for advanced
CFD codes on current supercomputers because available meniory dues not
permit direct LU factorization of the coefficient matrix when solving the
Euler or Navier-Stokes equations for large 2D or practical 3 problems.

As an alternative to pure Newton iteration. typical CFD codes employ
what is soinetiuies ealled *quasi-Newton™ lieration which ¢an be expressed
as
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—

2.7) - ‘;’g AQ= R
Qn+l - Qn + AQ

n= 1,2,3...

—-—

The left-hand-side coefficient matrix operator %’gi of Eq. (2.7) is, in many

CED codes, at best only a very rough approximation to the exact Jaco-
hian matrix operator that is associated with true Newton iteration. Thus,
Eqs. (2.7) and (2.8) are intended to represent a broad spectrum of implicit
and explicit iterative algorithms that are common to CFD software.

Some important computational difficulties are associated with the lin-
car semsitivity equations when they are iteratively solved in the standard
form given by Eqgs. (2.2) and (2.3). Maost importantly, the coeflicient ma-
trix. £, (and also (55)7) is characterized by alack of diagonal dominance
{for spatially higher order accurate. standard CFD methods) and perhaps
by poor overall conditioning. The result is poor performance, or even fail-
ure (divergence), of conventional iterative methods, when applied to the
sensitivity eqnations in standard form (Refs. [5) and [12]). Furthermore,
approximations of computational convenience cannot Le introduced into
any of the terms of these equations without aflfecting the aceuracy of the
sensitivity derivatives that are computed at convergence.

One approach that addresses these dilliculties is given by Fleshaky and
Baysal {Ref. [16]). 1n this work. a domain decomposition strategy. together
with a preconditioned conjugate-gradient (CQG) algorithm, is successfully
applicd to iteratively solve the sensitivity equations in standard form for an
airfoil flow from the TLNS equations. An iuitial indication of the feasibility
of this approach m 3D was recently demonstrated on an axisyminetric
nacelle configuration (Ref. [17]). A CG technique was also introduced
in Ref. [5) for obtaining sensitivity derivatives from the 3D full potential
equation for a wing.

Another strategy has been developed by Kerivi ot al. (Ref. [1&)) and
Newman et al. (Ref. [19]). where the sensitivity equations are recast and
solved in tncrementol tterative form; for Ey. (2.2}, this form is

OR, , _ ow _OR .. OR_, 4R
(2.9) - E)QAQ = R" = '(;)6 {- ﬁ?.\ + 6—;—-5

Q/m-ﬂ - le IR AQ'

(210) m = ]‘2,3‘,..

—~—

In Eq. (2.9). the lefti-hand-side rorfficient matrix, g'-f‘; represents any cone

vergent, cornputationally convenient approximation of the exact Jzacobian
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matrix. In particular, the identical approximate left-hand-side operator
and algorithm that arce used to solve the nonlinear flow equations can also
be used fo solve the lincar sensitivity equations. Comparisonsof Egs. {2.7)
and (2.8) with Eqs. {2.9) and {2.10) reveal that the linear sensitivity equa-
tions {Eq. {2.2}) are solved by interchanging the right-hand side of Eq. (2.7)
with that of Bq. {2.9) and “froezing” the loft-hand-side operator. At con-
vergenes, the acenracy of the sensitivity derivatives is not compromised if
the the terme on the right-hand side of Eq. {2.9) are evaluated consistently.
The use of the incremental iterative strategy is also applicable in solving

Eq. {2.5); in this case, the lefi-hand-side operator. %, must be transposed,
Implementation of the incremental iterative strategy for solving Eqgs.
(2.2} and (2.5} has besu successfully demonstrated in Rel. [18). In this
work, two airfoll problems using the TLNS equations were considered: low
Reynolds nunber launnar flow and high Reynolds number turbulent flow.
The well- known. spatially split. approximate factorization algorithm was
used to solve the nonlinear flow and the linear sensitivity equationsz in
meremental iterarive form. Derivatives, with respeet o geometric shape
and nongeometric shape input variables, were accurately compnted; they
rompared well with the method of finite differences, but were sipnificantly
less costly to obtain. For these two airfoil problems, attempts ta salve the
sensitivity equntions in standard form with conventional iterative mothods
failed becanse of the lack of dingonal dominance, as discussed previousiy.
Furthermore. use of an “in-core™ direct solution of these equations was not
feasible; thie large number of points in the computational grid exceedc. the
storage alfocation on the standard Cray-2 computer queves. Burgreen and
Baveal (Ref. [207; have recently extended their earlier work to combine the
efficient preconditioned conjugate gradient algorithm with the incremental
iterative formulation to sclve the sensitivity equations for an airfoil flow.
‘The incremental iterative formulation is very flexible, This formulation
should allow the future development of algorithms which are specifically
failored for the highly efficient solution of these equations on advanced
machines, including massively parallel architectures. Most significantly,
the incremental iterative formulation increases the feasibility of solving the
sensitivity equations for advance? 3D CFD codes. Korivi et al. {Ref. [21])
have demnonstrated the use of this strategy to efficiently and accurately
calculate quasianalytical sensitivity derivatives for a space-marching 3D
Euler code with supersonic flow over a blended wing-body configuration.

2.3. Construction of complicated derivatives, Application of the

quasianalytical methods that have heen described requires the constructon
and evaluation of many derivatives {e.g. the Jacobian matrices, % and
£2), found in the preceding equations For advanced CTD codes, the task
of constructing exactly all of these required derivatives *by hand™ and then
building the software for evaluating these terms is extremely complex, error

prone. and practically speaking. impossible. For example, the inclusion of
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even the most elementary turbulence model adds a tremendous level of
complexity Lo the Jacobian matrices, gg and 28 even in 2D. Reference
[18] shows that failure to consistently differentiate the turbulence modeling
terms can result in unexpectedly large errors in the sensitivity derivatives
that arc calculated. Other common features associated with advanced CFD
software that are expected to severely incrcase the complexity of ihese
terms include the use of multigrid for convergence acceleration, and/or
either structured multiblock or unstructured grid capability for application
to complex geometric configurations.

A promising possible solution te this problem may be found in the
use of a technique known as automatic differentiation (AD), which involves
application of a precompiler software tool that automatically diflerentiates
the application program source code from which sensitivity derivatives are
to be obtained. The output of the AD precompiler procedure is a new
source code which, upon compilation and execution. will compute the nu-
merical value(s) of the derivative(s) of any specificd output function(s) with

. respect to any specified input paramieter(s). In addition, this new progeam
will perform the: function evaluations of the original code. Computation of
derivatives via AD shouid not be confused with the use of a mathemati-
cal svinbolic manipulation software package (e.g., MACSYMA. Ref. [22]).
This latter approach was emploved extensively in Ref. '3, for example.

An AD precompilar software tool called ADIFOR (Automatic DIfferen-
tiation of FORtran, Ref. [23]) has recently been tested by Bischof et al.
(Ref. [24]) and Green et al. (Refs. [25.2€]) in applications to an advanced
CFD flow-analysis code called TENS3D (Ref. [27]). The TLNS3D code
solves the 3D 'I'LNS equations using central difference approximations of
all spatial derivatives and employ: an explicit solutionu algorithm that in-
cludes a highly efficient, state-of-the-art multigrid convergence aceeleration
technique, In these studies, a high Reynolds number, turbulent. 3D tran-
sonic flow over the ONERA M6 wing was selected as the examnple problem.

The ADIFOR procedure generated a new version of the TLNS3D) code
that was augmented with the capability to calculate the derivatives of lift.
drag, and pitching moument with respect to a variety of different types of
input parameters (including parameters related to the geometric shape of
the wing). The sensitivity derivatives that were calenlated by AD com-
pared very well with the same derivatives calculated by finite differences.
The computational cast of gencrating the results was roughly the same
for both methods; however. this cost was very high. Nevertheless, the re-
sults reported in Refs. {24.25,26) are encouraging in that they confirm the
feasibility of applying AD to advanced 3D CFD codes. In particular, the
AD procedure was proven to be capable’of generating accurats derivatives,
even for a complicated iterative solutiem algorithm such as multigrid and
with the extra level of complexity due to turbulence modeling.

When AD is applied dircetly to a typical iterative CFD code, the re-
sulting AD-enhanced CFD code nmst enlenlate the required sensitivity
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derivatives through a similar iterative process. From the discussion in
Refs. [23,24], the process whereby sensitivity derivatives are iteratively
caleulated after the application of AD can be represented conceptually by
combining Eqs. {2.7) and (2.8} {i.e., the basic CFD solution procedure) and
differentiating with respect to D; the resuli is

Qm-}l = Qfs — pRpm L pmps

(211 n=123..

=y 1
where P= (§§ .

Rieferences [23.24] note that as an option for improved overall com-
putational efficiency, the original CFD code can he used 1o first generate
a well-converged mumerical solution of the nonlinear flow equations be-
fore the AD-enhanced OFD code is executed to caleulate the sensitivity
derivatives. When implemented in this way, the derivative calculations via
Fq. (2.11) and AD essentially reduce to the previously discussed incremen-
tal iterative formulation of Egs. {2.9) and {2.10) because i is very small.
{infortunately, differentintion through the complete irerative CFD solution
algorithm and repeated calculation of its derivatives {represented hy P77
in Bq. (2.11}), although unneceszary, is nof avoided. The computationally
wasteful, repeated caleulation of P is probably a very significant part of
the total work represented by Fq. (2.11). Furthermore, the AD-enhanced
CFD code will continue to iterate on the well-converged solution to the
nonlinear fow equations. A concept for deactivation of the AD for some
parts of the wode or calenlations was suggested in Ref. [247.

An alternative strategy has been proposed by Newman et al. {Rel
[16]) for applying AD to large-scale CFD codes. If successful, the method
would circunvent the computationally wasteful aspects {previously dis-
cussed} associated with the conventioual direct application of AD to CFD
codes. Reference {18] proposes that AD be judiciously applied to differen-
tiate only the right-hand side of Eq. {2.7); the resulting terms would bLe
placed on the right-hand side of the incremental iterative formulation of
Eq. {291 ‘That is, AD would be used 1o assist iu the acourate construction
of the terms required on the right-hand side of Eq. {2.9}; the original CFD
code and solution alporithm would be used sy is” Jor the lefi-hand side
of Eq. {2.9). The resulting method should effectively combine an existing,
highly efficient, iterative solution algorithm with a fast, rebiable procedure
fur constructing all of the required derivatives.

2.4. Discussion of grid sensitivity terms. Typical COFD calcula-
tions are performed on a computational mesh that is “body-oriented.”
Changes in the grometric shape result in the movement of grid points
thronghout the eatite mesh ~ not just on the boundaries. Therefore, for
design variables thar are related to geometric shape, the grid sensitivity
matrix, X°. of Eqs. (2.2}, {2.4), and (2.£] is nonzero, nonsparse, and re
quires special consideration to evaluate computationally.
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One method for calculating these grid sensitivity terms is by finite
differences. I forward finite difference approximations are selected. for
example, the mesh generation code is used to produce one additional per-
turbed grid for a slightly perturbed value of each geometric shape design
variable of interest. This approach has been successfully used in many of
the references cited thus far. This procedure is generally expected to he
reliable in producing accurate grid sensitivity terms because the relation-
ships that are associated with the mesh generation process should be very
smooth by design.

An analytical method for evaluating the grid sensitivity derivatives
has been proposed by Taylor et al. (Ref. €}, which involves the chain
rule and direct differentiation of the relationships that are used by the
mesh generation code to distribute the grid points throughout the interior
of the computational dorain. Computationally, the geometric shape of
the domain is defined by the grid points that lic on the boundaries (i.e.,
on the body surfaces). These houndary grid points, Xp, can be viewed
as the principal input variables of the mesh generation code, whereas the
complete set of mesh points, X, are the output variables. Furthermore, the
boundary grid points of interest are a function of the geometric shape design
parameters. Thus, the function of the mesh generation code is expressed
as

(2.12) X = X(Xa(D))

Differentiation of Eq. {2.12) with respect to D yields the working relation
ship for X’

LAY
= m‘\n

where the matrix, X} = #*2 is a very small subset of X’. Typically.
the derivative X} can be evaluated analytically. it depends on the spe-

cific shape and particular parameterization of the body surface in terins
ax

of the design variables, D. The matrix ;= is unique to the particular

(2.13) X’

]
\

" mesh generation program employed to distnibute grid points throughout

the domain and can be evaluated by a one-time direct differentiation of the
relationships used. Smith and Sadrehaghighi (Ref. [28]) and Sadrehaghighi
et al. (Refs. [20.30]) have pursued isi some depth the analytical approach
of Eq. (2.13) to efficiently calculate aceurate grid sensitivity derivatives for
airfoil flows. This method is alsu used by Burgreen et al. in Ref. [31].
Another approach for calenlating grid sensitivity derivatives is pro-
poscd by Taylor et al. (Ref. [12}) and is also used by Korivi er al. {Ref.
{18)). The method employs an elastic membrane analugy applied to the
computational domain. That is, to remesh after a geometric shape change
and to calculate grid sensitivity derivatives, the domain is assumed to obey
the laws of linear elasticity. The procedure involves the use of a finite
element computer code for structural analysis to conrpure the requited
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grid sensitivity information. A delailed expianation of this method is given
in Ref. [12].

Green ot ul. {Ref [26]) have applied AD {i.e., ADIFOR) directly to
the grid generation program to successfully calculate the grid sensitivity
terms. These grid derivatives were subsequently coupled directly to the
AD-enhaneed TLNS3D How code. As previously discussed, the final result
is the successful caleulation of acrodynamic sensitivity derivatives with re-
spect to geometric design parameters for 3D turbulent flow over the ON-
ERA M5 wing.

2.5. Comments on simultaneous analysis and optimization.
Gradient information. whether it be sensitivity derivatives or adjoint vari-
ables, is required for design-oriented applications. In the approach of So-
bieski {Ref. [2]}, the global optimization, with its multidisciplinary objec-
tive function and constraints. is the outermust iteration loop and drives
the various single discipline analyses and their corresponding sensitivity
codes. Each discipline furnishes bhoth functional and gradient information
at earh optimization ileration step. In the case of iterative single-discipline
solutions. both the functicnal and gradient information should be well con-
verged. Other formulations for the multidisciplinary design optimization
problem have been proposed by Cramer of al. {Ref. {32]). Thesc formula-
tions involve the nature and extent of optimization and analysis partition-
ing or mixing.

When a single-discipline analvsis code employs an iterative solution
algorithm {i.e.. C'FD), then embedding the optimization iteration within
the discipline solution iteration may have significant computational advan-
tages. ‘This approach, of course, is possible and has been done for single-
discipline {optimization} design codes in both the discrete (disenssed here}
and continuous {discussed in the next section} approaches.

Rizk {Ref. [33)) proposed a sinuitancons snalysis and optimization
technique called the single-cycle scheme and recently summarized several
CFD applications of this technique {Ref. [34]). The design version of
TRANAIR, ns discussed by Huffman et al. (Ref. [33]}, incorporates sen-
sitivity analysis via both direct (such as Eq. (2.2)) and adjoint {such as
Eq. {2.3)) techniques. For the adjoints, however, the output functions §
{such as Fq. (2.3)) are the objective function and the constraints: these
adioint solutions are embedded in the flow-analysis solutions {i.c., simulta-
neous analysis and optinization}.

Two other diserete approach techniques for simultancous analysis and
optimization have been reported by Orozeo and Ghattas (Ref. [36]) and
Hou er al. {Ref. (37]). ‘These independent detivations essentially arrive at
the same sct of equations to solve for the flow and adjoint variables and are
aleo closely related 1o the varinrional or confrol theory techuiques discussed
in the next section.

R
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3. The continuous approach. An important advantage is assaci-
ated with the continuous method for computing gradient information, where
the governing equations and boundary conditions, or their corresponding
weak variational form, are diffcrentiated with respect to the design variables
prior to the discretization and solution of the resulting sensitivity equa-
tions. The advantage is increased flexidility. For example, a completely
different strategy might be selected to discretize and solve the sensitivity
cquations from the strategy used to solve the flow equations. A simpler
governing equation or set of governing equations other than those used in
the flow analysic might be selected and solved to estimate flow sensitivity
information. \With this increased flexibility comes the possibility that some
of the major difficulties associated with the discrete approach (which were
discussed earlier) might be mitigated. or completely avoided.

Shubin and Frank (Ref. [3]) have concluded that aerodynamic sensi-
tivity derivatives used with gradient-based design optimization procedures
should be consistently discrefe. That is, they should be essentially the ex-
act derivatives of the discrete algebraic system that approximately models
the continuous problem. Shubin and Frank assert that the use of inconsis-
tently discrete derivatives can cause significant sjowdown or even complete
failure of optimization procedures. Furthermore. they note that use of a
continuous formulation can vield derivatives that are not consistently dis-
crete; according to Ref. [3]. derivative incomsistency traced to this source
can create severe problemns for thie aptimization algorithm. Generally, the
continuous approach can vield cousistently discrete derivatives (or at least
very close approximations of the same) when a careful discretization of the
sensitivity equations is selected that is compatible with the one used to
discretize the flow equations: in addition. of course, the sensitivity cqua-
tions must. also be derived from the original flow equations. Therefore, the
requirement that the sensitivity derivatives be consistently discrete will
severely restrict the principal advantage of the continuous approach (i.e.,
flexibility). However. the necessity of always using consistently discrete
sensitivity derivatives for gradient-hased optimization is refuted in part by
Borggaard (Ref. [38]), who examines the identical quasi-one-dinmensional
nozzle flow problem with a normal shack (as investigated previousiy in Ref.
f3]). In Ref. [38]. the judicions use of inconsistently discrete derivatives is
shown in some cases to be beneficial, resulting in “successful” oprimization,
whereas use of the consistently discrete derivatives results in failure.

A contimuous formulation by Yates (Ref. 39]) and Yates and Des-
marias (Ref. (40]) has successfully demonstrated the accurate and coffi-
ciznt calculation of acrodynamic sensitivity derivatives from the integral-
equation representation of the governing equations of aerodynamics and
of the resulting aerodynamie sensitivity equations. Results to date have
been reported only for linear aetodynamic theory, in which the method
reduces 1o a conventional boundary element procedure. In principle, how-
ever, this strategy might Le extended to efficient!y compute aerodynamie
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sensitivity derivatives for 3D, nonlinear, viscous flow. An integral equation
represeniation results in solution procedures that are unique and that have
advantages over standard finite-difference and /or finite-volume methods for
solving the flow equations; these advantages then carry over in solution of
the resulting sonsitivity equations {Refs. [39,40]).

Continuous formulations for aerodynamic sensitivity derivatives ap-
plied w0 the 2D Euler equations are reported in Refs. [14] and [41]. Recall
that Ref. {14] also gave results for the discrete approach. Borggaard et al.
{Ret. "41]) successfully used the continuous spproach to caleulate sensitiv-
ity derivatives by direct differentiation of the 2D Euler equations together
with the boundary conditions. With the methods of Ref. [41], the existing
CFD software can be moddied in a relatively straightforward manner to
also efficiently solve the linear sensitivity equations. In particular, both the
nonlinear flow and the linear sensitivity equations are solved in incremental
iterative form using the identical approximate operator, The extension of
this methodology to 3D viseous flow appears to be feasibde in principle.

Another important consequence of the methods presented in Ref. {41]
is the apparent absence of grid sensitivity terms of the type discussed pre-
viously for the discrefe approach. Of conrse, with the complete lack of any
grid sensifivity terms, the sensitivity derivatives that are caleulated cannot
be consistently diserete {for design parameters that are geomatric shape
related). In Rel. {41]. the governing fluid equations and houndary condi-
tions are first differentiated in physical {Cartesian) coordinates; thereaftsr,
the resuliing sensitivity equations are transformed to and then numesically
solved i generalived computational coordinates {as are the nonlirear flow
equations). However. if the governing fuid equations are first transforined
to computational coordinates and are thereafter differentiated, then the
resulting sensitivity equations are the same as Lthose cbtained in Ref. [11}.
with one important exception. For design variables related to the geometric
shape, some additional terms appear that involve derivatives of the trans-
formation from physical to computational coordinates. The discretization
and subsequemt solution of the sensitivity equations would then involve
appraximation of these lermsg as “grid sensitivity” terms.

Jameson {Refs. [42.43]) has demonstrated the use of control theory
applied 1o serodynamic optimization, wherein the 2D Eufer equations are
used. In this work. gradient information used in the optimization is ob-
tained through numerical solution of a ¢continuous adjoint variable problem.
A similar technique has also been used in Rel. [44]. Ta'asan ev ol (Hel.
{43]) demonstrated the use of & continuons adjoint variable formulation for
the gradient-based aerodynamic design optimization of an airfoil fram the
small-disturbance equation. More recently, this work has been extended
to the 2D full poteniisl equation {Ref. [46]). Of particular interest in
Refs. {45,46] is that the optimization strategy features shnmltaneous mini-
nsization of the ohject function and solution of the diserete nonlinear flow
eyuations, and includes a heavy dependence on the careful use of multigrid
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for efficiency. In Refs. [43.45,46], an incremental iterative formulation is
used to solve the equations (i.e., the nonlinear flow and the linear adjoint
equations), after discretization.

4. Summary. An overview has heen presented of some recent re-
search activities that have concentrated on the problem of efficient and
accurate calculation of gradient information from advanced CFD codes.
This review was not intended to be exhaustive (i.e., some important. re-
cent advances have likely been overlooked). In particular, some studies,
which appear to be more related to optimization procedures. have also
been omitted. For the discrete approach. the hasic equations of aerody-
nanmiic sensitivity analysis were outlined, and three of the most important
computational difficulties associated with solving the sensitivity equations
were discussed. In addition somne potential remedies for these problems
were surveyed. Although significant advances using the discrete approach

" have been made, many obstacles remain that must be overcome hefore the
caleulation of quasianalytical sensitivity derivatives becomnes routine for
turbulent 3D flows.

Iu principle, the flexible nature of the continuous approach might pos-
sibly be cxploited to overcome some of the computational difficulties that
have Leen discussed for the discrete approach. At the same time, however,
the consequenees of this flexibility are typically sensitivity derivatives that
are different in the sense that they are pot consistently discrete. This re-
sult can have an impact on the performnance of optimizaticn algorithis;
whether the impact is large or small, or even good or bad. is not yet clear.
The continuous formulation can be applied in a earcful manner to pro-
duce the consistently discrete derivatives (or very nearly these derivatives).
However, then the advantage of Hexibility for the continuous approach is
sacrificed and the difference between the discrete and the continuous ap-
proaches becomes more an issue of philosuphy than of substance.
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REMARKS ON THE CONTRCL OF TURBULENT FLOWS
ROGER TEMAM®

Introduction

QOur aim in the article is to address some theoretical and computational
questions related to the control of viscous incompressible flows governed by
the Navier-Srokes equations or relaied equations.

This article comprises thren parts where we study three types of prob-
leme which correspond to different preoccupations and utilize different tools
for their solution.

In Section 1 we study some control problems where the ohjective is to
minimize, in some sense, turbulence. Distributed control, houndary control
problemns for thermohydraulics and for a channel flow in space dimension
two are copsidered. After modeling the problem, we show the existence
of an optimal contrel, and derive the necessary conditions of optimality
{NCO) for the problem. using the adjoint state.

In Section 2 we consider in space dimucnsion three one of the problens
from Section 1, namely the distributed control problem. The analysis of
Scetion | does not apply here since the initial value problem for the Navier-
Stokes equations is not known to be well posed in dimension three. The
existence of an optimal control is established and. if the optimal state 1s
sufficiently regular. we are able with appropriate methods, to derive the
necessary conditions of optimality.

In Section 3 we study the optimal control of the Stochastic Burgers
equatirns. 1t was shown that the Burgers equations forced by a white
noise produce turbulence phenomena similar to those observed for fluid.
The objectives and the wicthods are now different. Instead of looking for
an optimal control, we only try to decrease the cost function by using a
one step control procedure. Theoretical questions are not addressed here
but we report on numerical results which show a very significant deerease
of the cost function. v

The results in Sections 1, 2. 3 are based on references {1), [2] and {7)
where further details can be found.

1. Modeling of some controf problems. We deserilie three model
problems in control of fluids (control of turbulence).

1.1. A mode! distributed control problem: control by vol-
ume forces. We consider the incompressible Navier--Stokes equations in
a smooth bounded two -dimensional domain Q. on an interval of time [0, 7],

* Laboratoire d" Analyse Numérique, Bat. 425, Université Paris Sud. Oisay and In
stitute for Scientific Computing and Applicd Muthematics, Indiana University, Blocm-
ington, Indiana.
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We set Qr = 0 x [0. 7] and recall the equations

§-§$s+{a*€’)a+Vp= f in Qr.

Y:-u=0 in Qr,
¥=3 aon 39)‘{0*7‘39

ﬁit:ﬁ = ug.

(1LY

Hers u = {u;, 42} is the velocity vector, p the pressure, v > 0 the
kinematic viscozity: £, which will be the control. represents volume forees.

The mathematical serting of the equation is well known and we do not
recall it with full details (see e.g. [13], [16]). Let

V={re Hé{ﬁ}g,dis‘ v =0},

let H be the closure of V in L3OV, we consider the linear unbounded
operator 4 in H associsted with the Srokes problem, and the vonlinear
operator B defined by
B(u) = B(v,u), VYuél|
- : .a_tjﬂ'
(Bls v).H) = }: R 0:dx.
W AL

Then {1.1) is cquivalent to a differentinl equation in H for u = u{t). where
w(fie V:

dt
u{f} = ug.

(1.2) { gﬁ-f—sﬁé::«}- Buy=jfin H, 1¢{(0, T

We will use subsequently the I'réchet derivative of B and it:
B'() v = Blp,v) + B(w,¢)
(B'(o) - ¢.9) = (Blp,0),v) + (B0.5), 4.

The control problem
In the langnage of control theory {see [14]), f is the control, v = uy is
the afnte. We want to reduce the turbulence as messyred by

T
f /kari wy(z. tif drdt,
o } 414

and henee we introduce the cost function:

T T
=1 j / fiz.)fdrdt + / [ leurl uytz. O drdt.
2J2 Ja ; 20y Jo
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The problem is then
(P1) To minimize J(f), for f € L3(0.T: H).

Concerning the existence of an optimal control we have

THEOREM 1.1. For u: given in H, there exists at lcast an elrment f
in L3(0.2:H), and @ € C(0.T) ) N LAO. T V), such that J{f) attains
its minimum at [ and i = uy.

Remark 1.2. Of cours>, since J(f) is not a convex function, we cannnt
assert that f is unique.
The nceessary conditions of optimality (NCO)
Basically (sce e.g. [10]}.. they consist in writing that
(1.3) () = 0,
or
U =00 Y

where J7is the Fréchet derivative of J.

A convenient expression of J/ can be given by using the adjeint state
which is defined by the adjoint of the linearized equations,

Equation (1.2 linearized around an orbit u = u; reads

i
((); tvAr ¢ B'uy)-v=0. in H 1€(D,7),
(1.4) tIyEV ae.

1Y) = 0,

where sinply B'iug) v = Blug,v) + Biv ug)
The adjoint squation of (1.4) 1s

~%'—;- rrvAw+ B'(uwe=h, in H te{0,T),
(1.3) w(fic V" ae.,
wil) =1

Here B'{ugi” is the adjoint of B’{uy) in H and we have intraduced h in
the right hand <ide of the first equation (1.5). Note that w depends on f
{through up) and on h: for completeness we can write w = we(h) or wih).
Now the adjoin? stete for the present control problem is 1 = wy(h) for
=% % ¥ » u. Introducine the pressure ke functions, we can iaterpret

|
f
z
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{1.5) as the following set of partial differential equations and boundary
conditions:

r

-;ﬁ;—&*:}ﬁ&-{'{?&}‘-t?i-—{if-V}?E:-!—?s?:?x? x &,
in Qr =Qx (0.1},
16)  {4ive=0 in Q.
=0 on 60 x{0,1},
L #(z,T)=0, z€Q.

Using & = #(V x ¥ x uy) one can prove that
JUy = £+ w(V x Txu)
r
(U I) =[ f{f+ wi(V x ¥ x ug)]f*dedt, Vf*.
o Ji

The following theorem follows then promptly from (1.3} {see [1,2]).
TueoreM 1.3. Let {[.u} be an optional pair for problem (Py). Then

the following equality holds

(1.7) JHETxVxi)=0

where @ Is the adjoint state, solution of the adjoint linearized problem.
Furthermore, we have the following regularity property for f:

JFe 120, T, V) 120, T HYD)).
The KCO for problem Py consist of
- equation (1.2) with f == fu = u,
- equation (1.3) (or (1 6) with w = . h=V < Cx &.f = J,

squation {(1.7).

Of course this set of equations is not easy to solve: however one can
comnpnte (or hope to compute} %, f. 1 by using optimization alogrithms
sich as the gradient or conugate gradient algorithin.

Numerical Algorithms

"The classical gradient algorithmn {or (P;) consists in defining recarsively
a sequence of f, € L*(Qr). Starting from an arbitrary fo € L¥(Q7), we
write {u, = wp{C x ¥ xoug )k

fasi = fa — an{fx):



[
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fn-H = fn - ﬂu(fn + !l'n)~

The numbers p,, > 0 must be chosen properly.

The conjugate gradient algorithm for (P} consists in defining recnr-
sively two sequences f, k.. Starting from an arbitrary fi € 72(Q7) we
write (wy, = 0, (V % ¥ x ug,)):

) | ADA294785

ko = fo + wo,

n = fo+ Un

JorUn = famt + wn = wny) - (fn 4wy )dadt

[ .
-t fQT |fﬂ—l - (1!,,_1f2¢i1‘,df

where p > 0. )

Both algorithms converge to f if fy is chosen close enough to f and
the p. are suitable. Unfortunately, for realistic flows, these algorithins
necessitate a computing power bevond that presently available. In the rest
of this seclicn we describe. in a similer manner, the modeling of some
related flow control problems. In Section 3 we will describe suboptimal
procedure which are more feasible.

fn+l = fn = pky.

1.2. A boundary control problem in thermohydraunlics. The
“gystemn”! that we consider here is a two-dimensional layer of fluid heated
(or ccoled) from above and below. The flow is periodic in direction z;
| (period Ly). at rest at the bottoin of the layer r2 = 0. driven at velocity
1 = pon top of the layer. 22 = Lz. The boundary velocity ¢ is the control;
the stafc of the system is given by the field of velocities u = u, and the field
of temperatures 7 — 7. solutions of the classical Boussinesy equations:

%ti = vAu+(u - V)u+Vp=—q(7 -l in Qr = A x (0.7},

%}-.L(u-?)r—x.é?:O in Qr,

V-u=0 in Qr.
(1.8)
The density is one. v, k.g are positive constants, ¢z = (0.1) ic the unit
vertical vector: Q is the domain (0,L;) x (0, L»). These equations are
supplemented by the boundary conditions described before, namely the
periodicity in the z; direction and

(19) u:’,é‘.f‘:fgat.tg:l:z.
. u=0,r=7atry =10,

1 In the sense of contrel theory
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and by initia! conditions
(1.10) {u{z.0) = uo(2}}, r{=,0)=m(z), z€ 0

For @, rs. 7y given in L*(0,T; H'/%(0, L,)), one can show that equations
{1.8)-{1.10) posses a unique solution {u,r} = {u,, 7.}

We encounter a regularity difficulty for the choice of the cost function.
A simple choice would be

¢ T priy 9 m T -
. hig)l= §L L L IR) dz;di-}--?-j: fai?x u {z t)-dzdt,

m, £ > 0. However it is not easy fo obtain the existence and uniqueness of
solution of {1.8)~{1.10) if we only assume that ¢ € L3(0, T: HV/%(0. L)).
This result may not be true if we require v, € L¥(0.7; HY{(2)?). On the
other hand for ¢ € L2(0.T: HY¥0. L,)?), the function J; above may not
attain its infimum. Hence we choose the less convenient cost function

f T
Jalg) = :Ej; ;"f 1)!;;4:: 0.LsY a4 - D) / f IV xu, (3' 2?*;25’*{5

It can be shown as for Theorem 1.1, that this function Jo atrains its
minimum on L20,T: HY3(0, L)), at least at one point ¢ with corre-
sponding state {ir. 7} = {ua. 7p}.

The necessary condition of optimality (NCO} s obtained by writing

JiE) =0

It is not easy to make it explicit because of the space HY/2(0, L;)*. How-
ever, il we do not emphasize the existence of the optimal contrel but only
the NCO, then we can make the NCO explicit in the case of Jy.

Indeed the Fréchet derivative J! can be computed using the adjoint
state 1,5 which is solution of the following problem with ¢ = & and
A=V x¥xus

Hu . .
~5 " vAE ~ (1, - V)@ + (Vuy ) w?
, é¥r, +Vg=h in Qp,
(1.11) s v
-5 {u, -V —8Ad =0 in Qr,

=0 in Qr.

The boundary conditions are {1.9) homogeneized, and the “initial” condi-
tions at f == T read

e TY=0, &z, T)=0, zcf.
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Then J{{&) is equal to - :/gyw- and the NCO is
2

i ~
ué—;‘; =0on (0,T) x (0, /.,).

-
‘The (usual) gradient algorithm consists in constructing a sequence of func-
tions ¢ such that

P4l T P o p"']{(?”)
( alr«'n)
EPn=pP\Fn-V— .

HI?
where i@y, is the solution of (1.11) with p replaced by p,. Aby Vx ¥V xu, .

Remark 1.4. Of course we conld have chosen the top and bottom
heatings, =1, 72 as the control functions for this problem.

1.3. Boundary control of channel flows. . This control problem
is a very important une. Large scale computations are being performed on
this prublem at this time with the methods of Section 3 (¢f. [3'). In this
section we present the modeling of the control problem and describe briefly
the theoretical results similar to those of Sectiens 1.1 and 1.2.

The “system” is a channel. @ = (0. L) x (0.L2). The flow is incom-
pressible and driven by a given flux. Hence we write the incompressihle
Navier Stokes equationsin @7 = Q2 x (0.7:

Qu _
(1.12) ot
V-u=90, in Q.

vAu+{u-Viu+Vp=0, in Qr,

‘The flow F is preseribed i if u = {u,uz):

L.
(1.13) f 11 (0, 22:1)dry = F (given).
o
The pressure p is of the form
p= Ptz 4p,
where P = P(1} is an unknown pressure gradient determined by F.

The boundary conditions are the periodicity of v and 3/ in direction #,
{period Ly). and on the walls rs = 0, L;, we have

(1.14) vz, 00 8) = ey, u(ry, Lait) = pes.
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Here ¢, is the vector {0, 1) in the plane and ¢ is the control. Of course the
state is the pair {u. p} defined by (1.10)-(1.14) which we supplement with
an initial condition

{1.15} . Oy=u{z), z€Q

Muore preciscly the functional setting of (1.12)-{1.15} is as follows. Let V
be the space of functions v in H*(2)? which are L;-periodic in direction
z3 which vanish at 22 = 0 and L, and such that dive = 0. Lev H be the

closure of ¥ in 23(2)".
For } € It and ¢ € HY¥{I')? given. we denote by Vi, the set of

functions v in V such that

. {;
{i.ig} ‘/& Q{f} 3‘%;5‘4 =TI t%r;:ﬂ fa =2
in particular for F = 0.¢ = , we write i{; Vi 6. Of course Vr, is the
affine space
Vr.=ta+d,

where & €V is any Tunction of V' satisfving (1.16). Let also /- and H,
be defined in a similar way: Hy = Hp . and Hp, is the space af functions
¢ in H such that?

L2
(1.17) ]t r{0. z2)deo = F. "ﬂ:,:mg, =

Again
3?.; = H%} + é.

Now for $ given in L;‘({i T ¥} for ug given in Hy ., there exists a unique
pair {u = v . p = p_.}, solution of (1.12)-(1.15); in particnlar u € L2(0,T: V¢ ,).
As usual p is only defined up to an additive constaut: as indicated before
the pair {u,,p,} is the sfale associated with the control ¢

iu the control problem we waunt to chonse p 8o as to reduce the mag-
nitude of the drag on the wall

A possible choice of the cost function J is {£,m > 0):

| £ 1 (0 :
nw=grai 3 ([ ;;an) a.
H

2 Note the diffsrence with {1161
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Qe

including a time average of the square of the drag. An alternate, seemingly
more interesting choice is ‘

o fe  m T Ou;)z
Jo(p) = 3 ek = 2/0 /!‘. (8z2 dz, dt,

the integral term in Js rorresponding to a time sverage of surface siresses.
As in Section 1.2, we have to choose X properly. The simplest choice,
L¥0,T; L*{T,)) is not suitable; hence we take X = L3(0,T; H'Y/?(T',)?):
more preciscly X is the space of traces on the wall Ty of the functions ¢
of L?(0,T; V), satisfving the first condition in (1.16) (the flux condition),
and such that v/ = 8r/8t belongs to L?(0.T; V") (see e.g. [13))%
The control problem is then
(P3) To minimize Jyfor J2) on X. »
We obtain (see [1]}, the same theoretical results as in Section 1.1 and
1.2, namely
~ For F € 2 given. for ug given in H satisfying the first condition in {1.16),
there exists an optimal triplet {u.p, £}, where ¢ is an optimal
control {solution of (P3) and & = us.p = p; is the corresponding
distribution of velacities and pressures.)
— We can write the necessary couditions of optimality for (Ps) but they
are rather involved. As in Section 1.2. they are easier to write if
X is asubspace of L2(0.T; L3(T-)?); see (1].
~ We can think at implementing a gradient type algorithm for the nuiner-
ical solution of problem (P3), but we nieet two difliculties:

e If X C L¥(0,T; H-/3(1'1)*), then the gradient algorithm is not easy
to make explicit {even theoretically)

o If X C LY0.T; L¥(T3)?), we can write gradient algorithms similar
to those in Section 1.1, but the amount of computing is beyond
the capacity of the available computers at present time as well as
in a foreseeable fulure. We refer the reader to Section 3 for more
affordable computations.

femark 1.5. For other control probienis for the Navier-Stokes equa-
tions see [11.12].

2. The three-dimensional case. (NCO) The question addressed
here is a purely theoretical vue. Since the mathematical theory of the
Navier-Stokes equations in dimension three is not complete, we cannot
write the necessary conditions of op:imalily in a straightforward way as we
did in Section 1. In fact the modcling of the control problem itself raises
some difficulties; if we consider the three dimensional analog of the problem
in Section 1.1, we are not able, for f given, to define a unique state uj.

Our aim in this section is to consider the three-diracnsional version of
the problem in Section 1.1, and to derive some partial results following [2],

3 Hence ¢ is prescribed ut time t = 0, equal to uz ), the second compnnent of ug.
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in particular the necessary conditions of optimality when the optimal state

@ is sufficiently regular.
The 3-D Navier-Stokes equations read as in (1.1):

i—? - pAu+{u-Vu+Sp=f in, Qr=Qx{0,T),

(1) V.u=0 in Qr.
u=0 on &,
vz 0} = u{r), r Q.

Here Q is now an open bounded Jdomain in B2 The functional form of the
equation is similar to (1.2}

dt

2.2 { G b vaus B = f.
: {0} = uy.

We know that for every fin L3H{0.7; V"), and for every wg in J9, there
exists a nonnecessarily uncgue solution u of {2.2) such that

w€ L0, T; H)yn L3O, T; V).

For the control problem, the cantrol is [, the sfate v = uy. The cost
Junction is

£ 12 2 m (7o ‘2
=3 [ MeRards+ L IS x w s,

where £, m > 0 and fe L2, T, V")

‘The control problem {P,) consists in minimizing J{f} for all [ in
L¥0,T;V”). Turthermore, for each f, if uy is not unigue we minimize
as well with respect to all possible v = uy satisfying (2.2).

The lack of uniqueness of uy does not prevent us from proving the
existence of an optimal pair f, &, as in Theorem 1.1. More precisely there
exists an optimal { and a corresponding state & == uj solution of (2.2).

We want to derive the NCO. This will be done under the assumption

2.3 g€ 130.T: L) ie.,

[j (L *ﬁ{zgf}i‘dz)z.ﬁ < co.

% Notarinnas are the same as in Section 1.1

We have
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THEOREM 2.1. Let i be an optimal state such that (2.3) holds. Then
there exists an adjoint state & solution of

weLX0.T:V)NL®(0,T; H)

(2.4) -%% + vAL+ B'(u)" i = ~mV x (V x @),
w(T) =0,

and we have

(2.5) FATVf 4= 0.

Sketch of the proof
Consider the modified problem
{P4) To minimize
= § ,JTIA"W"I(E)I"(LW-{- %’-fnT IS x u(s))?ds
+1 [T (fy Iu - afdz) ds.
for
u€C([0.1} H)NLA(0. T, V)N LA0, T L)),
(2.6) w € LA0.T;V'). feL*0,T;V")and
v +vAu + Blu) = f. u(0) = uy.

“Ihe solution of (P;) exists, is unique and it is obviously the pair {f.4).
Writing the NCO for (Py), we ohtain

T .
,/ A= f + 0, iy veds = 0,
0
for all
f=9+vau+ B(@),

with {f, it} as in (2.3). and u(0) = 0. We then prove (2.4) by showing that
all such f's are dense in L2(0,T; V') (sce (2] for the details).

3. Control of the stochastic burgers equation. Some optimal
control problems have been described in Sections 1 and 2. From the point
of view of control theory, they correspond to open loop full information
control problems.

From the practical, computational point of view. we have seen that
they correspond to problems which are not feasible at this time, We now
consider a diffctent type of problems, from a more practical viewpoint.
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We are interested in active control and feedback procedures. We are less
demanding and do not look for optimal control anvmore; instead we look
for procedures which are feasible and which produce an effective reduction

of the cost function.
The model problem that we consider is the Stochastic Burgers equa-

tion, and we follow [7]. At this tinie. in & progressing work [3} we try
to develop similar procedures for the control of the channel flow problem
considered in Section 1.3.

We consider the Burgers equations with a white noise forcing. These
equations are an interesting model for the Navier-Stokes equations (NSE):
they are simpler than the NSE but it was shwon thar the white noise forcing
produces a behavior close to that of turbulent flows (ef. [6]). Other work
on the control of Burgers equations appear in |1.5]; sce also the references

therein and in {7).
After nondimensionalization the Stochastic Burgers equations read

Su vt 1 ¢

) §+§;'§_§§§=‘f+“ 0<crecl, £>4,
(3.1 u{z.0) = ulz), 9<r<l,

u{0,1) = ¥ult), u{l.f) = v{f).

Here Re is the Reynolds (like) number, x is after nondimensicualization, a
white noise random process in z with zero mean and mean square value 1,

Wr=0 (=L

The control problem The sfafe of the system is deseribed by the function
u. The control could be f, or v = {v.tn}, or the puir {f ¥}. Hereafter
we emphasize the boundary control case {control = ¥}, but we present
numerical results on both the boundary control case and the distributed
control case {control = f}; further details appear in {7].

We wonld like to reduce the “lurbulence™ as measured by

b /oy 2
(3.2) : ~ f& (é—;{:.f)) dr.

Hence we consider the instantaneous cost function
33 Jly)= ! Wolt)? + -{hé o= ! (iﬁ-{: 1) gd:
: )= ghvos 1t 2 J, \Bz' " '

which accounts for the cost {3.2} and for the cost of implementing the
control #{f.m > 0). By boundary layer effect, the main contribuions to
the integral in {3.2) are produced near the houndary. Hence. instead of
{3.2) we could consider

(g;i&f})z + @E“**})?*
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however the integral {3.2) leads to simpler computations.
A control problem similar to those of Section 1 could be set as before,
with cast function

' T
s =E [ oy
0

However as indicated before. simplicity is preferred now over optimality
and we wiil look for suboptimal choices of the control function ¢ which
produce a substantial reduction of Ji(12) over a period of time.

We use a marching precedure {(one step optimal conirol) based on a
time descretization of the equations.

Time discretized Burgers equations
The Burgers equations (3.1) are written as an abstract evolution equa-
tion (¥ = Re™1):

(3.4) ‘;—:‘ +vdu 4 R, v) =10,

and using a Cranck Nicholson time discretization scheme, we obtain

w ~ -t

@+ 3 4(u +u* 4o ('i’\u Y (R ) =0
For u = u", we write {3.3) as
(3.6) Au" = R (W7 "y =0,
where
Av® = (I + "—‘y-A)
R"(u*.¢") = & S R(u", )+ IRy, =l
~u"" + 5%.-1u"".
The problem. similar to those considered in Section 1 is now the following:

Assuming that u*=- and v~ are known. how to best determine u”
and " so as to minimize

o £, . . m du"
As in Section 1 we can show, at each step n, that this problem has an
optimal solution 7 with corresponding state u” (solution of (3.6)). Using
the adjoint <tate we can describe the optimality conditions for this prob
Jemn; we can also deseribe gradient algorithin which has heen effectively
implemented. At each step n, this algorithn: prodnces ©™ as the limit of a
sequence ¢ k — oc. For the details see [7].
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In conclusion we emphasize the fact that J*()"#) does not necessarily
decrease us k increases. In fact, setting ¢ = limjpe o ¥, we do not even
assert that

{3‘?} ] }ﬁ(éﬁ} S Jﬁ-!{éﬂ-!}’

The effective. large scale computations. reported in [7] show that (3.7) may
not be true as # evolves {n increases). However. over a period of time, some
significant or substantial decreases of J7{¢") is observed.

Figures 3.1 10 3.7 ate borrowed from [7]. Figures 3.1, 3.2, 3.3 give
some characteristics of the flow®. Figures 3.4 uud 3.5 are related to a
control problem, Figures 3.6 to 3 boundary control problen:. The decrease
of the cost function J is always important.

Finally let us emphasize Figures 3.7 which are very instructive. We

attempted here to plot v{(5, 4} = ¥(?) vs f,—:z*{{?,fj with the hope of finding
some actual feedback law ‘

(3.8) vo{t)= F (g—;{{;,z}) .

It appears from Figure 3.7 that there is no singie valued feedback faw of
type {1.8) in this case. '

& Ar; not mentioned Lefore is the time step discratization of the white nsise
&ty > At for all computaticns. o
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